Zero point energies and structures have been calculated for ArnHF clusters (n=1–4) using the diffusion quantum Monte Carlo method and potential surfaces based on pairwise additive and non pairwise additive models. Energy differences for related potential surfaces are computed with a correlated sampling technique. The two lowest energy isomers of Ar4HF are found to be energetically equivalent if zero point energy effects are taken into account. Their energetic ordering depends sensitively on threebody contributions to the interaction potential. The calculated size dependent frequency shifts for fundamental and overtone transitions of HF caused by the argon micromatrix are in good agreement with experimental data but are sensitive to nonadditive forces. The line shifts cannot be explained quantitatively without accounting for zero point energy effects. The band origin of the yet unobserved C2v isomer of Ar4HF is predicted to be about 2.8 cm−1 to the red of the C3v isomer band.

1.
J.
Jortner
,
Z. Phys. D
24
,
247
(
1992
);
J.
Jortner
,
J. Chim. Phys.
92
,
205
(
1995
);
J.
Jortner
and
N.
Ben-Horin
,
J. Chem. Phys.
98
,
9346
(
1993
).
2.
M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Oxford University, Oxford, 1987).
3.
B. M.
Axilrod
and
E.
Teller
,
J. Chem. Phys.
11
,
299
(
1943
).
4.
J. A. Barker, in Rare Gas Solids, edited by M. L. Klein and J. A. Venables (Academic, New York, 1976);
Vol. 1, p. 212;
W. J.
Meath
and
R. A.
Aziz
,
Mol. Phys.
52
,
225
(
1984
);
W. J.
Meath
and
M.
Koulis
,
J. Mol. Struct (THEOCHEM)
226
,
1
(
1991
).
5.
G.
Cha↰asinski
,
M. M.
Szczȩśniak
, and
S.
Scheiner
,
J. Chem. Phys.
94
,
2807
(
1991
).
6.
C. A.
Parish
and
C. E.
Dykstra
,
J. Chem. Phys.
98
,
437
(
1993
).
7.
J. A. Barker, in Rare Gas Solids, edited by M. L. Klein and J. A. Venables (Academic, New York, 1976), Vol. 1, p. 212.
8.
T. R.
Horn
,
R. B.
Gerber
,
J. J.
Valentini
, and
M. A.
Ratner
,
J. Chem. Phys.
94
,
6728
(
1991
).
9.
A. R.
Cooper
,
S.
Jain
, and
J. M.
Hutson
,
J. Chem. Phys.
98
,
2160
(
1993
);
A. R.
Cooper
and
J. M.
Hutson
,
J. Chem. Phys.
98
,
5337
(
1993
).,
J. Chem. Phys.
10.
A.
Bhattacharya
and
J. B.
Anderson
,
J. Chem. Phys.
100
,
8999
(
1994
).
11.
W.
Schöllkopf
and
J. P.
Toennies
,
Science
266
,
1345
(
1994
).
12.
R. C.
Cohen
and
R. J.
Saykally
,
J. Phys. Chem.
94
,
7991
(
1990
).
13.
A.
McIllroy
,
R.
Lascola
,
C. M.
Lovejoy
, and
D. J.
Nesbitt
,
J. Phys. Chem.
95
,
2636
(
1991
).
14.
M. J.
Elrod
,
D. W.
Steyert
and
R. J.
Saykally
,
J. Chem. Phys.
94
,
58
(
1991
);
M. J.
Elrod
,
D. W.
Steyert
and
R. J.
Saykally
,
95
,
3182
(
1991
).,
J. Chem. Phys.
15.
D. J.
Nesbitt
and
R.
Lascola
,
J. Chem. Phys.
97
,
8096
(
1992
).
16.
M. J.
Elrod
,
R. J.
Saykally
,
A. R.
Cooper
, and
J. M.
Hutson
,
Mol. Phys.
81
,
579
(
1994
).
17.
J. A.
Barker
,
R. A.
Fisher
, and
R. O.
Watts
,
Mol. Phys.
21
,
657
(
1971
).
18.
G. C.
Maitland
and
E. B.
Smith
,
Chem. Phys. Lett.
22
,
443
(
1973
).
19.
R. A. Aziz, in Inert Gases, Springer Series in Chemical Physics 34, edited by M. L. Klein (Springer, Berlin, 1984), p. 5.
20.
R. A.
Aziz
and
M. J.
Slaman
,
Mol. Phys.
58
,
679
(
1986
).
21.
K. T.
Tang
and
J. P.
Toennies
,
J. Chem. Phys.
80
,
3726
(
1984
);
K. T.
Tang
and
J. P.
Toennies
,
Z. Phys. D
1
,
91
(
1986
).
22.
P. A.
Stockman
and
G. A.
Blake
,
J. Chem. Phys.
98
,
4307
(
1993
).
23.
H. S.
Gutowsky
,
T. D.
Klots
,
C.
Chuang
,
C. A.
Schmuttenmaer
, and
T.
Emilsson
,
J. Chem. Phys.
86
,
569
(
1987
).
24.
M. A.
Dvorak
,
S. W.
Reeve
,
W. A.
Burns
,
A.
Grushow
, and
K. R.
Leopold
,
Chem. Phys. Lett.
185
,
399
(
1991
).
25.
G.
Cha↰asinski
,
M. M.
Szczȩśniak
, and
B.
Kukawska-Tarnawska
,
J. Chem. Phys.
94
,
6677
(
1991
).
26.
C.
Douketis
,
J. M.
Hutson
,
B. J.
Orr
, and
G.
Scoles
,
Mol. Phys.
52
,
763
(
1984
).
27.
J. M.
Hutson
,
J. Chem. Phys.
89
,
4550
(
1988
).
28.
D. J.
Nesbitt
,
M. S.
Child
, and
D. C.
Clary
,
J. Chem. Phys.
90
,
4855
(
1989
).
29.
J. M.
Hutson
,
J. Phys. Chem.
96
,
4237
(
1992
).
30.
J. M.
Hutson
,
J. Chem. Phys.
96
,
6752
(
1992
).
31.
C. M.
Lovejoy
,
J. M.
Hutson
, and
D. J.
Nesbitt
,
J. Chem. Phys.
97
,
8009
(
1992
).
32.
S.
Green
and
J. M.
Hutson
,
J. Chem. Phys.
100
,
891
(
1994
).
33.
J. T.
Farrell
,
O.
Sneh
,
A.
McIllroy
,
A. E. W.
Knight
, and
D. J.
Nesbitt
,
J. Chem. Phys.
97
,
7967
(
1992
).
34.
H.-C.
Chang
and
W.
Klemperer
,
J. Chem. Phys.
98
,
2497
(
1993
);
H.-C.
Chang
,
F. M.
Tao
,
W.
Klemperer
,
C.
Healey
, and
J. M.
Hutson
,
J. Chem. Phys.
99
,
9337
(
1993
).,
J. Chem. Phys.
35.
M. J.
Elrod
,
J. G.
Loeser
, and
R. J.
Saykally
,
J. Chem. Phys.
98
,
5352
(
1993
).
36.
J.
Tennyson
,
Comp. Phys. Rep.
4
,
1
(
1986
).
37.
Z.
Bačić
and
J. C.
Light
,
Annu. Rev. Phys. Chem.
40
,
469
(
1989
).
38.
M.
Mladenović
and
Z.
Bačić
,
J. Chem. Phys.
93
,
3039
(
1991
).
39.
G.
Brocks
,
A.
van der Avoird
,
B. T.
Sutcliffe
, and
J.
Tennyson
,
Mol. Phys.
50
,
1025
(
1983
).
40.
N. C.
Handy
,
Mol. Phys.
61
,
207
(
1987
).
41.
M. J.
Bramley
,
S.
Carter
,
N. C.
Handy
, and
I. M.
Mills
,
J. Mol. Spectrosc.
157
,
301
(
1993
).
42.
A.
McNichols
and
T.
Carrington
Jr.
,
Chem. Phys. Lett.
202
,
464
(
1993
).
43.
A. Ernesti and J. M. Hutson, Faraday Discuss. No. 97, Struct. Dynam. van der Waals Complexes (1994);
Phys. Rev. A
51
,
239
(
1995
).
44.
M. Lewerenz and R. O. Watts (to be published).
45.
R. N.
Barnett
and
K. B.
Whaley
,
J. Chem. Phys.
96
,
1953
(
1992
).
46.
M. Lewerenz (submitted).
47.
M. A.
Suhm
and
R. O.
Watts
,
Phys. Rep.
204
,
293
(
1991
).
48.
J.
Tobochnik
,
H.
Gould
, and
K.
Mulder
,
Comp. Phys.
4
,
431
(
1990
).
49.
P. J.
Reynolds
,
J.
Tobochnik
, and
H.
Gould
,
Comp. Phys.
4
,
662
(
1990
).
50.
S. A.
Chin
,
Phys. Rev. A
42
,
6991
(
1990
).
51.
C. J.
Umrigar
,
M. P.
Nightingale
, and
K. J.
Runge
,
J. Chem. Phys.
99
,
2865
(
1993
).
52.
J.
Anderson
,
J. Chem. Phys.
63
,
1499
(
1975
).
53.
M. H.
Kalos
,
Phys. Rev. A
2
,
250
(
1970
).
54.
M. H. Kalos and P. A. Whitlock, Monte Carlo Methods (Wiley, New York, 1986), Vol. 1.
55.
K. E. Schmidt and D. M. Ceperley, in The Monte Carlo Method in Condensed Matter Physics, Topics in Applied Physics 71, edited by K. Binder (Springer, Berlin, 1992);
D. M. Ceperley and M. H. Kalos, in Monte Carlo Methods in Statistical Physics, Topics in Current Physics 7, edited by K. Binder (Springer, Berlin, 1986).
56.
V.
Buch
,
J. Chem. Phys.
97
,
726
(
1992
);
P.
Sandler
,
J.
Oh Jung
,
M. M.
Szczȩśniak
, and
V.
Buch
,
J. Chem. Phys.
101
,
1378
(
1994
).,
J. Chem. Phys.
57.
M.
Quack
and
M. A.
Suhm
,
Chem. Phys. Lett.
183
,
187
(
1991
).
58.
M.
Lewerenz
and
R. O.
Watts
,
Mol. Phys.
81
,
1075
(
1994
).
59.
S.
Kirkpatrick
and
E. P.
Stoll
,
J. Comp. Phys.
40
,
517
(
1981
).
60.
W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes (Cambridge University, Cambridge, 1986, 1992).
61.
M. Mladenović and M. Lewerenz (to be published).
62.
J. M.
Standard
and
P. R.
Certain
,
J. Chem. Phys.
83
,
3002
(
1985
).
63.
A.
Kumar
and
W.
Meath
,
Mol. Phys.
54
,
823
(
1985
).
64.
A.
McIllroy
and
D. J.
Nesbitt
,
J. Chem. Phys.
97
,
6044
(
1992
).
65.
S.
Liu
,
Z.
Bačić
,
J. W.
Moskowitz
, and
K. E.
Schmidt
,
J. Chem. Phys.
100
,
7166
(
1994
).
66.
S. W.
Rick
,
D. L.
Lynch
, and
J. D.
Doll
,
J. Chem. Phys.
95
,
3506
(
1991
).
67.
M. Lewerenz (to be published).
68.
C. M. Lovejoy, T. G. Lindeman, and D. J. Nesbitt (in preparation);
J. T.
Farrell
,
S.
Davis
, and
D. J.
Nesbitt.
J. Chem. Phys.
103
,
2395
(
1995
).
69.
J. W.
Cooley
,
Math. Comput.
15
,
363
(
1961
);
B. R.
Johnson
,
J. Chem. Phys.
67
,
4086
(
1977
).
70.
J. N.
Huffaker
,
J. Chem. Phys.
64
,
4564
(
1976
).
71.
S. A. C.
McDowell
,
M. G.
Trefry
, and
A. D.
Buckingham
,
Mol. Phys.
81
,
1225
(
1994
).
72.
S. Y.
Liu
,
Z.
Bačić
,
J. W.
Moskowitz
, and
K. E.
Schmidt
,
J. Chem. Phys.
101
,
6359
,
10
(
1994
);
S. Y.
Liu
,
Z.
Bačić
,
J. W.
Moskowitz
, and
K. E.
Schmidt
,
103
,
1829
(
1995
).,
J. Chem. Phys.
73.
D. Blume, M. Lewnerenz, M. Kaloudis, and F. Huisken (to be published).
74.
P. Niyaz, Z. Bačić, J. W. Moskowitz, and K. E. Schmidt, Chem. Phys. Lett. (submitted).
This content is only available via PDF.
You do not currently have access to this content.