We present partial photoionization cross sections and photoelectron asymmetry parameters for the photoionization of NO leading to the (2π)−1X1Σ+, (5σ)−1b3Π, (5σ)−1A1Π, (4σ)−1c3Π, and (4σ)−1B1Π states of NO+. The results were obtained with multichannel multiplet‐specific interaction potentials derived from correlated target states. The resulting scattering equations were solved using the Schwinger variational method. The calculations considered excitation energies in the 10–40 eV range. It was found that selective orthogonalization eliminated spurious resonances that were encountered. We found that in the channel leading to the (2π)−1X1Σ+ state of NO+, the structure seen experimentally in the 14–17 eV region is due to two pronounced valence autoionizing states, one of which is broadened by interaction with a shape resonance. We predict the existence of a third strong σ→π* transition of 2Σ symmetry in the photoabsorption cross section at approximately 14.8 eV photon energy which, due to symmetry restrictions, cannot decay by autoionization. In addition, our results indicate that the broad structure seen experimentally in the 20–40 eV region in the (2π)−1 channel might be due to coupling to shape resonances which occur in other ionization channels. Our predicted total cross sections and photoelectron asymmetry parameters differ from those obtained by previous theoretical approaches, all of which neglected correlation effects. The present results were found to be in good agreement with the available experimental data. We found that the existence and position of the various resonances were sensitive to the level of correlation and interchannel coupling included in the calculation. In particular, we found that the resonant enhancement in the channels leading to both the (5σ)−1b3Π and (5σ)−1A1Π states of NO+ was due to a single 5σ→σ* resonant state which decayed into both ionization channels.

1.
R. E.
Stratmann
,
G.
Bandarage
, and
R. R.
Lucchese
,
Phys. Rev. A
51
,
3756
(
1995
).
2.
R. E.
Stratmann
and
R. R.
Lucchese
,
J. Chem. Phys.
102
,
8493
(
1995
).
3.
O.
Edqvist
,
L.
Åsbrink
, and
E.
Lindholm
,
Z. Naturforsch.
26
,
1407
(
1971
).
4.
S.
Wallace
,
D.
Dill
, and
J. L.
Dehmer
,
J. Chem. Phys.
75
,
1981
(
1971
).
5.
M. R.
Hermann
,
C. W.
Bauschlinger
, Jr.
,
W. M.
Huo
,
S. R.
Langhoff
, and
P. W.
Langhoff
,
Chem. Phys.
109
,
1
(
1986
).
6.
M. R.
Hermann
,
S. R.
Langhoff
,
T. J.
Gil
, and
P. W.
Langhoff
,
Chem. Phys. Lett.
125
,
336
(
1986
).
7.
M. E.
Smith
,
V.
McKoy
, and
R. R.
Lucchese
,
J. Chem. Phys.
82
,
4147
(
1985
).
8.
M. E.
Smith
,
R. R.
Lucchese
, and
V.
McKoy
,
J. Chem. Phys.
79
,
1360
(
1983
).
9.
D. L.
Lynch
,
B. I.
Schneider
, and
L. A.
Collins
,
Phys. Rev. A
38
,
4927
(
1988
).
10.
S. H.
Southworth
,
A. C.
Parr
,
J. E.
Hardis
, and
J. L.
Dehmer
,
J. Chem. Phys.
87
,
5125
(
1987
).
11.
L. A.
Morgan
and
J.
Tennyson
,
J. Phys. B
26
,
2429
(
1993
).
12.
G.
Bandarage
and
R. R.
Lucchese
,
Phys. Rev. A
47
,
1989
(
1993
).
13.
L. A. Colins and B. I. Schneider, in Proceedings of the Eleventh International Conference on the Physics of Electronic and Atomic Collisions, edited by H. Gilbody, W. Newell, F. Read, and A. Smith (North-Holland, New York, 1987).
14.
S. E.
Branchett
and
J.
Tennyson
,
Phys. Rev. Lett.
64
,
2889
(
1990
).
15.
A. E.
Orel
,
T. N.
Rescigno
, and
B. H.
Lengsfield
,
Phys. Rev. A
42
,
5292
(
1990
).
16.
B. H.
Lengsfield
III
and
T. N.
Rescigno
,
Phys. Rev. A
44
,
2913
(
1991
).
17.
R. W. Zurales and R. R. Lucchese (unpublished).
18.
P.
Erman
,
A.
Karawajczyk
,
E.
Rachlew-Källne
, and
C.
Strömholm
,
J. Chem. Phys.
102
,
3064
(
1995
).
19.
R. J.
Stubbs
,
T. A.
York
, and
J.
Comer
,
Chem. Phys.
106
,
161
(
1986
).
20.
R. K. Nesbet, Variational Methods in Electron-Atom Scattering Theory (Plenum, New York, 1980).
21.
R. R.
Lucchese
and
V.
McKoy
,
Phys. Rev. A
28
,
1382
(
1983
).
22.
R. R.
Lucchese
,
Phys. Rev. A
33
,
1626
(
1986
).
23.
R. R.
Lucchese
,
G.
Raseev
, and
V.
McKoy
,
Phys. Rev. A
25
,
2572
(
1982
).
24.
J. D. Weeks, A. Hazi, and S. A. Rice, in Advances in Chemical Physics, edited by I. Prigogine and S. A. Rice (Interscience, New York, 1969), Vol. XVI, p. 283.
25.
All bound state orbitals were obtained using the General Atomic and Molecular Electronic Structure System (GAMESS) computer codes, as described in
M. W.
Schmidt
,
K. K.
Baldridge
,
J. A.
Boatz
,
J. H.
Jensen
,
S.
Koseki
,
M. S.
Gordon
,
K. A.
Nguyen
,
T. L.
Windus
, and
S. T.
Elbert
,
Quantum Chem. Prog. Exchange Bull.
10
,
52
(
1990
). These programs also contain the basis sets used in these calculations.
26.
K. P. Huber and G. Herzberg, Constants of Diatomic Molecules (Van Nostrand, New York, 1979).
27.
S.
Southworth
,
C. M.
Truesdale
,
P. H.
Kobrin
,
D. W.
Lindle
,
W. D.
Brewer
, and
D. A.
Shirly
,
J. Chem. Phys.
76
,
143
(
1982
).
28.
P.
Morin
,
M. Y.
Adam
,
P.
Lablanquie
,
I.
Nenner
,
M. J.
Hubin-Franskin
, and
J.
Delwiche
,
Ann. Isr. Phys. Soc.
6
,
613
(
1984
).
29.
P. W. Langhoff, in Resonances in Electron-Molecule Scattering, van der Waals Complexes, and Reactive Chemical Dynamics, edited by D. G. Truhlar (American Chemical Society, Washington, D.C., 1984), p. 113.
30.
R. R. Lucchese and F. A. Gianturco, Int. Rev. Phys. Chem. (to be published).
31.
H.
Lefebvre-Brion
,
Chem. Phys. Lett.
9
,
463
(
1971
).
32.
T.
Gustafsson
and
H. J.
Levinson
,
Chem. Phys. Lett.
78
,
28
(
1981
).
33.
Y.
Iida
,
F.
Carnovale
,
S.
Daviel
, and
C. E.
Brion
,
Chem. Phys.
105
,
211
(
1986
).
34.
K.
Kirby
,
T.
Uzer
,
A. C.
Allison
, and
A.
Dalgarno
,
J. Chem. Phys.
75
,
2820
(
1981
).
This content is only available via PDF.
You do not currently have access to this content.