Using nuclear reaction analysis, we have measured the enrichment by one of the components at the surface of a binary mixture of random olefinic copolymers, with components of monomer structure E1−x1EEx1 and E1−x2EEx2. Here E and EE are the linear ethylene and branched ethylethylene groups (C4H8) and [C2H3(C2H5)], respectively, and x represents the fraction of the EE group randomly distributed on the chains. We examined 12 different couples covering a range x=0.38–0.97. The mixtures, whose thermodynamic behavior was established in our earlier paper, were cast in the form of films on both a silicon and on a gold‐covered silicon surface, and were investigated in the one‐phase region of the binodal in the vicinity of the critical temperature. We find that it is always the more flexible component—the one with a shorter statistical step length, corresponding to the higher ethylethylene fraction (higher x)—that is enriched at the polymer/air surface. Within our resolution neither component is enriched at the polymer/solid interface. These results show clearly that enthalpic rather than entropic factors dominate the surface potential driving the surface enrichment. For two of the mixtures we determined the excess of the surface‐preferred species as a function of mixture composition along an isotherm in the one‐phase region of the binodal. A consistent description of our data in terms of a mean‐field model is provided by including in the surface potential a term in the mixture composition gradient at the polymer surface.

1.
J. W.
Cahn
,
J. Chem. Phys.
66
,
3667
(
1977
).
2.
P.-G.
de Gennes
,
Rev. Mod. Phys.
57
,
827
(
1985
).
3.
M. Schick, in Les Houches, session XLVIII, Liquids at Interfaces, edited by J. Charvolin, J. F. Joanny, and J. Zinn-Justin (North-Holland, Amsterdam, 1990), pp. 419–497.
4.
K.
Binder
,
Acta Polym.
46
,
204
(
1995
).
5.
I.
Schmidt
and
K.
Binder
,
J. Phys. (Paris)
46
,
1631
(
1985
).
6.
U. Steiner, J. Klein, E. Eiser, A. Budkowski, and L. J. Fetters, in Ordering in Macromolecular Systems, edited by A. Teramoto (Springer, Berlin, 1994), pp. 313–329.
7.
H.
Nakanishi
and
P.
Pincus
,
J. Chem. Phys.
79
,
997
(
1983
).
8.
U.
Steiner
,
J.
Klein
,
E.
Eiser
,
A.
Budkowski
, and
L. J.
Fetters
,
Science
258
,
1126
(
1992
).
9.
U.
Steiner
,
J.
Klein
, and
L. J.
Fetters
,
Phys. Rev. Lett.
72
,
1498
(
1994
).
10.
Z. Y.
Chen
,
J.
Noolandi
, and
d.
Izzo
,
Phys. Rev. Lett.
66
,
727
(
1991
).
11.
R. A. L.
Jones
,
Phys. Rev. E
47
,
1437
(
1993
).
12.
S. M.
Cohen
and
M.
Muthukumar
,
J. Chem. Phys.
90
,
5749
(
1989
).
13.
G. H.
Fredrickson
and
J. P.
Donley
,
J. Chem. Phys.
8941
(
1992
).
14.
J. P.
Donley
and
G. H.
Fredrickson
,
J. Polym. Sci., Part B
33
,
1343
(
1995
).
15.
G. H.
Fredrickson
and
A. J.
Liu
,
J. Polym. Sci., Part B
33
,
1203
(
1995
).
16.
Q. S.
Bhatia
,
D. H.
Pan
, and
J. T.
Koberstein
,
Macromolecules
21
,
2166
(
1988
).
17.
F.
Bruder
and
R.
Brenn
,
Phys. Rev. Lett.
69
,
624
(
1992
).
18.
F.
Bruder
and
R.
Brenn
,
Europhys. Lett.
22
,
707
(
1993
).
19.
R. L.
Jones
,
E. J.
Kramer
,
M. H.
Rafailovich
,
J.
Sokolov
, and
S. A.
Schwarz
,
Phys. Rev. Lett.
62
,
280
(
1989
).
20.
A.
Budkowski
,
U.
Steiner
, and
J.
Klein
,
J. Chem. Phys.
97
,
5229
(
1992
).
21.
U.
Steiner
,
J.
Klein
,
E.
Eiser
,
A.
Budkowski
and
L. J.
Fetters
,
Ber. Bunsenges. Phys. Chem.
98
,
366
(
1994
).
22.
F.
Scheffold
,
E.
Eiser
,
A.
Budkowski
,
U.
Steiner
,
J.
Klein
, and
L. J.
Fetters
,
J. Chem. Phys.
104
,
8786
(
1996
) (preceding paper in this issue).
23.
U. K.
Chaturvedi
,
U.
Steiner
,
O.
Zak
,
G.
Krausch
,
G.
Schatz
, and
J.
Klein
.
Appl. Phys. Lett.
56
,
1228
(
1990
).
24.
J.
Klein
,
Science
250
,
640
(
1990
).
25.
We use the root mean square deviation σ of a Gaussian distribution in order to characterize the system resolution. This measure relates to the half width at half maximum (HWHM) w of a step function as w = (2 ln 2) 1/2σ = 1.177 σ.
26.
W.-K. Chu, J. W. Mayer, and M.-A. Nicolet, Backscattering Spectrometry (Academic, New York, 1978).
27.
A. Losch, F. Scheffold, U. Steiner, T. Kerle, G. Schatz, and J. Klein (unpublished).
28.
T. Flebbe, D. Burkhard, and K. Binder (unpublished).
29.
In some cases surface nucleated spinodal decomposition resulted in a small depletion layer adjacent to a large surface peak. This was corrected for by subtracting the area of the depletion layer from the total area of the surface layer.
30.
R.
Krishnamoorti
,
W. W.
Graessley
,
N. P.
Balsara
, and
D. J.
Lohse
,
Macromolecules
27
,
3073
(
1994
).
31.
M.
Sikkah
,
N.
Singh
,
A.
Karim
,
F. S.
Bates
,
S. K.
Satija
, and
C. F.
Majkrzak
,
Phys. Rev. Lett.
70
,
307
(
1993
).
32.
M. A.
Carignano
and
I.
Szleiffer
,
Europhys. Lett.
30
,
525
(
1995
).
33.
We did not have sufficient independent information on the surface parameters of our mixtures (e.g., differences in surface tension of the different components) for a detailed comparison with the criterion for entropic vs enthalpic dominance given in Ref. 13. A comparison based on the parameter μ1 extracted from our data via the Cahn construction [see Eqs. (9)-(11) and caption to Fig. 13[ suggests the enthalpic term is dominant.
34.
See computer simulations by
K. P.
Walley
,
K. S.
Scweizer
,
J.
Peanasky
,
L.
Cai
, and
S.
Granick
,
J. Chem. Phys.
100
,
3361
(
1994
) and references to earlier work therein.
35.
P. G.
deGennes
,
J. Chem. Phys.
72
,
4756
(
1980
).
36.
P. Flory, Principles of Polymer Chemistry (Cornell University Press, Ithaca, NY, 1971);
P. G. de Gennes, Scaling Concepts in Polymer Physics (Cornell University Press, Ithaca, N.Y., 1979).
37.
We note a word of caution that determination of φs via neutron reflectometry (J. Genzer, A. Faldi, R. Oslanec, and R. Composto—preprint) shows some discrepancy with values of φs either measured using the surface excess approach, or expected from the mean-field expression (8).
38.
A. Budkowski, F. Scheffold, U. Steiner, J. Klein, and L. J. Fetters (unpublished ).
39.
X.
Zhao
,
W.
Zhao
,
J.
Sokolov
,
M. H.
Rafailovich
,
S. A.
Schwarz
,
B. J.
Wilkens
,
R. A. L.
Jones
, and
E. J.
Kramer
,
Macromolecules
24
,
5991
(
1991
).
40.
In the case of the Fredrickson-Donley model, the prefactor of the (d φ/dz)z = 0 term, Eq. (2), is too small by about an order of magnitude to account for the observed variation of dfs/dφs. In an earlier study of surface segregation from a polystyrene/brominated-polystyrene mixture (Ref. 18), the Cohen-Muthukumar model was used to account for data showing a downturn in surface excess as the mixture composition approached the coexistence curve in the one-phase regime.
41.
K. Binder (private communication).
42.
R. A.
Jerry
and
E. B.
Nauman
,
J. Colloid Interface Sci.
154
,
122
(
1992
);
R. A.
Jerry
and
E. B.
Nauman
,
Phys. Rev. E
48
,
1583
(
1993
). In this model [which includes also terms in (d2φ/dz2)] the parameter Y [Eq. (10)] is a function of the intermolecular interactions of the mixture components and is independent of the mixture composition φ.
43.
Adding to fs a third virial term in φs3, say, which is a natural extension to the virial expression for fs in Eq. (9), cannot account for the slow, quasilinear decrease of dfs/dφs (data points in Fig. 13) at φs<0.6 followed by the sharp downturn at higher φs.
This content is only available via PDF.
You do not currently have access to this content.