We present here an experimental and theoretical study of the application of two‐dimensional exchange nuclear magnetic resonance spectroscopy (NMR) to the investigation of the rotational diffusion of colloidal particles. The theoretical discussion includes the nature of the NMR frequency time‐correlation function where the NMR interaction is represented by the chemical shift anisotropy (CSA). Time‐correlation functions for the isotropic rotational diffusion of a suspension of colloidal particles containing single and multiple sites are derived in addition to time‐correlation functions for the rotational diffusion of a suspension of symmetric top particles containing an isotropic distribution of a single CSA interaction. Simulations of two‐dimensional exchange spectra for particles undergoing isotropic rotational diffusion are presented. We performed two‐dimensional exchange NMR experiments on a colloidal suspension of spherical poly(methyl methacrylate) (PMMA) particles which were synthesized with a 20% enrichment in 13C at the carbonyl site. Rotational diffusion time‐correlation functions determined from the experimental exchange spectra are consistent with the composition of the colloidal suspension. Detailed explanations of the syntheses of the enriched methyl 13C‐(carbonyl)‐methacrylate monomer and the small quantities of 20% enriched 13C‐(carbonyl)‐poly(methyl methacrylate) microspheres used for this study are presented.

1.
K. Schmidt-Rohr and H. W. Spiess, Multidimensional Solid-State NMR and Polymers (Academic, San Diego, 1994).
2.
S.
Wefing
and
H. W.
Spiess
,
J. Chem. Phys.
89
,
1219
(
1988
).
3.
S.
Wefing
,
S.
Kaufmann
, and
H. W.
Spiess
,
J. Chem. Phys.
89
,
1234
(
1988
).
4.
R.
Piazza
and
V.
Degiorgio
,
Phys. Rev. B
42
,
4885
(
1990
).
5.
R.
Piazza
and
V.
Degiorgio
,
Physica A
182
,
576
(
1992
).
6.
Dynamic Light Scattering: Applications of Photon Correlation Spectroscopy, edited by R. Pecora (Plenum, New York, 1985).
7.
C.
Schmidt
,
B.
Blümich
, and
H. W.
Spiess
,
J. Magn. Reson.
79
,
262
(
1988
).
8.
U. Haeberlen, High Resolution NMR in Solids: Selective Averaging (Academic, New York, 1976).
9.
M. E. Rose, Elementary Theory of Angular Momentum, 1st ed. (Wiley, New York, 1957).
10.
J.
Jeener
,
B. H.
Meier
,
P.
Bachmann
, and
R. R.
Ernst
,
J. Chem. Phys.
71
,
4526
(
1979
).
11.
D. L.
Favro
,
Phys. Rev.
119
,
53
(
1960
).
12.
E. N.
Ivanov
,
Sov. Phys. JETP
18
,
1041
(
1963
).
13.
P. J. W. Debye, Polar Molecules (The Chemical Catalog Company, New York, 1929).
14.
R. B.
Jones
,
Physica A
150
,
339
(
1988
).
15.
B. J. Berne and R. Pecora, Dynamic Light Scattering (Wiley, New York, 1976).
16.
R. B.
Jones
,
Physica A
157
,
752
(
1989
).
17.
K.
Schmidt-Rohr
and
H. W.
Spiess
,
Phys. Rev. Lett.
66
,
3020
(
1991
).
18.
The equation given by Berne and Pecora [p. 143, Eq. (7.7.1)] for the rotational diffusion coefficient characterizing diffusion about the axis of symmetry appears to be incorrect.
19.
F.
Perrin
,
J. de Phys. et Rad.
5
,
497
(
1934
).
20.
F.
Perrin
,
J. de Phys. et Rad.
7
,
1
(
1936
).
21.
M.
Hasegawa
,
S.
Ohyabu
,
T.
Ueda
, and
M.
Yamaguchi
,
J. Labelled. Compd. Radiopharm.
18
,
643
(
1981
).
22.
K.
Schmidt-Rohr
,
A. S.
Kulik
,
H. W.
Beckham
,
A.
Ohlemacher
,
U.
Pawelzik
,
C.
Boeffel
, and
H. W.
Spiess
,
Macromolecules
27
,
4733
(
1994
).
23.
D. J.
States
,
R. A.
Haberkorn
, and
D. J.
Ruben
,
J. Magn. Reson.
48
,
286
(
1982
).
24.
Y. K. Lee, doctoral thesis, University of California at Berkeley, 1994.
25.
F.
Fujara
,
S.
Wefing
, and
H. W.
Spiess
,
J. Chem. Phys.
84
,
4579
(
1986
).
This content is only available via PDF.
You do not currently have access to this content.