Amplified spontaneous emission (ASE) from single rotational levels of the Rydberg states (3dσ,π)H2Σ+, H′ 2Π(v=1), (4pσ)M2Σ+(v=0), (4pπ)K2Π(v=1), (4dσ,π)O2Σ+, O′ 2Π(v=0), 4f(v=1), and (5sσ)S2Σ+(v=0) of nitric oxide, populated through optical–optical double resonance excitation has been observed. The ultraviolet laser is fixed to a specific rotational component of the A2Σ+(v′=0 and 1)←X2Π3/2(v″=0) transitions of NO. When the second visible laser was introduced collinearly and the frequency was resonant to the transitions from the A2Σ+ state to the higher Rydberg states, the highly directional ASE in the near infrared region was found to be generated along the excitation laser beams. ASE excitation spectra exhibit an excellent signal‐to‐noise ratio, demonstrating the usefulness of the laser‐induced ASE as a novel spectroscopic technique for excited states of molecules. Dispersed ASE spectra revealed the cascading radiative decay from the initially populated levels down to the A2Σ+ state. The rotational dependence of the ASE pattern as well as the effect of a perturbation between Rydberg and valence states were briefly discussed.

1.
A. E. Siegman, LASERS (Oxford University, Oxford, 1986).
2.
Yu-Lin
Huang
and
R. J.
Gordon
,
J. Chem. Phys.
94
,
2640
(
1991
).
3.
Yu-Lin
Huang
and
R. J.
Gordon
,
J. Chem. Phys.
97
,
6363
(
1992
).
4.
M. E.
Riley
,
Phys. Rev. A
41
,
4843
(
1990
).
5.
R. W.
Boyd
,
M. S.
Malcuit
,
D. J.
Gauthier
, and
K.
Razaewski
,
Phys. Rev. A
35
,
1648
(
1987
).
6.
G. I.
Peters
and
L.
Allen
,
J. Phys. A
4
,
238
(
1971
).
7.
J. W.
Glessner
and
S. J.
Davis
,
J. Appl. Phys.
73
,
2672
(
1993
).
8.
J.
Ishii
,
K.
Uehara
, and
K.
Tsukiyama
,
J. Chem. Phys.
102
,
9174
(
1995
).
9.
W. L.
Glab
and
J. P.
Hessler
,
Appl. Opt.
26
,
3181
(
1987
).
10.
R. J.
Miller
,
L.
Li
,
Y.
Wang
,
W. A.
Chupka
, and
S. D.
Colson
,
J. Chem. Phys.
90
,
754
(
1989
).
11.
A.
Lagerqvist
and
E.
Miescher
,
Can. J. Phys.
44
,
1525
(
1966
).
12.
K. P.
Huber
and
E.
Miescher
,
Helv. Phys. Acta
36
,
257
(
1963
).
13.
R.
Suter
,
Can. J. Phys.
47
,
881
(
1969
).
14.
M.
Huber
,
Helv. Phys. Acta
37
,
329
(
1964
).
15.
W. Y.
Cheung
,
W. A.
Chupka
,
S. D.
Colson
,
D.
Gauyacq
,
P.
Avouris
, and
J. J.
Wynne
,
J. Chem. Phys.
78
,
3625
(
1983
).
16.
C.
Amiot
and
J.
Verges
,
Phys. Scr.
26
,
422
(
1982
).
17.
K. L.
Wray
,
J. Quant. Spectrosc. Radiat. Trans.
9
,
255
(
1969
).
18.
O. B.
D’azy
,
R.
López-Delgadó
, and
A.
Tramer
,
Chem. Phys.
9
,
327
(
1975
).
19.
D. J.
Hart
and
J. W.
Hepburn
,
J. Chem. Phys.
86
,
1733
(
1987
).
20.
J. R.
Banic
,
R. H.
Lipson
, and
B. P.
Stoicheff
,
Can. J. Phys.
62
,
1629
(
1984
).
21.
R.
Gallusser
and
K.
Dressler
,
J. Appl. Math. Phys. (ZAMP)
22
,
792
(
1971
).
22.
C.
Amiot
,
Chem. Phys. Lett.
83
,
40
(
1981
).
23.
E. Miescher and K. P. Huber, Spectroscopy, edited by D. A. Ramsay, M. T. P. International Review of Science, Physical Chemistry Series 2 (Butterworth, London, 1976), Vol. 3, pp. 37–73.
24.
K.
Kaufmann
,
J. Phys. B
24
,
2277
(
1991
).
25.
Ch.
Jungen
and
E.
Miescher
,
Can. J. Phys.
47
,
1769
(
1969
).
26.
K. P.
Huber
,
M.
Vervloet
,
Ch.
Jungen
, and
A. L.
Roche
,
Mol. Phys.
61
,
501
(
1987
).
27.
P.
Arrowsmith
,
W. J.
Jones
, and
R. P.
Tuckett
,
J. Mol. Spectrosc.
86
,
216
(
1981
).
28.
Ch.
Jungen
,
J. Chem. Phys.
53
,
4168
(
1970
).
This content is only available via PDF.
You do not currently have access to this content.