Monte Carlo simulation based on Widom’s test particle method is used to study the behavior of dilute ionic solutes in a quenched disordered medium with ionized obstacles. The structure of the medium is assumed to correspond to that of an ionic fluid equilibrated at certain prequenching temperature Tq and permittivity εq different from the corresponding values at the conditions of observation. The correlations among solute ions display qualitative differences from those observed in annealed systems. The ions of equal sign are attracted to domains of the disordered material characterized by charge opposite to that of the ions. The attraction of ions of the same sign to the same domains results in an apparent attractive contribution to the disorder‐averaged interionic potential. At distances sufficiently exceeding the screening length pertaining to the ionized obstacles at the prequenching conditions, the disorder‐induced term prevails over the direct Coulombic repulsion and a net attraction is observed. A similar mechanism leads to a long‐ranged repulsion between oppositely charged ions. These findings are in agreement with earlier calculations of the disorder‐averaged ion–ion potentials based on the asymptotic Debye–Hückel description of the disordered medium. The simulations are also used to estimate the effects of the medium on thermodynamic properties of the embedded ionic solute. The energies and activity coefficients are found to decrease with the product of the prequenching temperature and permittivity, a phenomenon explained in terms of the increase of the potential fluctuations in the disordered medium with growing εqTq. In spite of its global electroneutrality, the quenched medium displays a strong selectivity with respect to the valency of the solute, the tendency towards absorption increasing with the charge of the ions. The selectivity rapidly increases with increasing value of the characteristic product of the prequenching temperature and the permittivity εqTq.

1.
A.
Weinrib
and
B. I.
Halperin
,
Phys. Rev. B
27
,
413
(
1983
).
2.
A.
Baumgartner
and
M.
Muthukumar
,
J. Chem. Phys.
87
,
3083
(
1987
).
3.
W. A.
Madden
and
E. D.
Glandt
,
J. Stat. Phys.
51
,
537
(
1988
).
4.
S. F.
Edwards
and
M.
Muthukumar
,
J. Chem. Phys.
89
,
2435
(
1988
).
5.
M. E.
Cates
and
R. C.
Ball
,
J. Phys. (Paris)
49
,
2009
(
1988
).
6.
J. D.
Honeycutt
and
D.
Thirumalai
,
J. Chem. Phys.
90
,
4542
(
1989
).
7.
M.
Muthukumar
,
J. Chem. Phys.
90
,
4594
(
1989
).
8.
L. A.
Fanti
,
E. D.
Glandt
, and
W. G.
Madden
,
J. Chem. Phys.
93
,
5945
(
1990
).
9.
J. A.
Given
,
Phys. Rev. A
45
,
816
(
1992
).
10.
J. A.
Given
,
J. Chem. Phys.
96
,
2287
(
1992
).
11.
W. G.
Madden
,
J. Chem. Phys.
96
,
5422
(
1992
).
12.
J. A.
Given
and
G.
Stell
,
J. Chem. Phys.
97
,
4573
(
1992
).
13.
D.
Wu
,
K.
Hui
, and
D.
Chandler
,
J. Chem. Phys.
96
,
835
(
1992
).
14.
S.
Stepanov
,
J. Phys. A: Math. Gen.
25
,
6187
(
1992
).
15.
E.
Lomba
,
J. A.
Given
,
G.
Stell
,
J. J.
Weis
, and
D.
Levesque
,
Phys. Rev. E
48
,
233
(
1993
).
16.
C.
Vega
,
R. D.
Kaminsky
, and
P. A.
Monson
,
J. Chem. Phys.
99
,
3003
(
1993
);
R. D.
Kaminsky
and
P. A.
Monson
,
J. Chem. Phys.
95
,
2936
(
1991
).
17.
A. P.
Thompson
and
E. D.
Glandt
,
J. Chem. Phys.
99
,
8325
(
1993
).
18.
M.
Sahimi
,
AIChE J.
39
,
369
(
1993
);
M.
Sahimi
,
41
,
229
(
1995
).,
AIChE J.
19.
D. M.
Ford
and
E. D.
Glandt
,
J. Chem. Phys.
100
,
2392
(
1994
).
20.
A. K.
Chakraborty
,
D.
Bratko
, and
D.
Chandler
,
J. Chem. Phys.
100
,
1528
(
1994
).
21.
M. L.
Rosinberg
,
G.
Tarjus
, and
G.
Stell
,
J. Chem. Phys.
100
,
5172
(
1994
).
22.
P.
Haronska
and
T. A.
Vilgis
,
J. Chem. Phys.
101
,
3104
(
1994
).
23.
J. A.
Given
and
G.
Stell
,
Physica A
209
,
495
(
1994
).
24.
W.
Dong
,
E.
Kierlik
, and
M. L.
Rosinberg
,
Phys. Rev. E
50
,
4750
(
1994
).
25.
M. W.
Deem
and
D.
Chandler
,
J. Stat. Phys.
76
,
907
(
1994
).
26.
X.
Yi
,
K. S.
Singh
, and
M.
Sahimi
,
AIChE J.
41
,
456
(
1995
).
27.
J. A.
Given
,
J. Chem. Phys.
102
,
2934
(
1995
).
28.
W. G.
Madden
,
J. Chem. Phys.
102
,
5572
(
1995
).
29.
E.
Pitard
,
M. L.
Rosinberg
,
G.
Stell
, and
G.
Tarjus
,
Phys. Rev. Lett.
74
,
4361
(
1995
).
30.
D.
Bratko
and
A. K.
Chakraborty
,
Phys. Rev. E
51
,
5805
(
1995
).
31.
K.
Leung
and
D.
Chandler
,
J. Chem. Phys.
102
,
1405
(
1995
).
32.
A. K.
Chakraborty
and
E. I.
Shakhnovich
,
J. Chem. Phys.
103
,
10751
(
1995
);
D.
Bratko
,
A. K.
Chakraborty
, and
E. I.
Shakhnovich
,
Phys. Rev. Lett.
76
,
1844
(
1996
).
33.
D. Chandler, in Les Houches, Part I., Liquids, Freezing, and the Glass Transition, edited by D. Levesque, J. P. Hansen, and J. Zinn-Justin (Elsevier, Amsterdam, 1991), p. 193.
34.
D.
Chandler
,
Y.
Singh
, and
D. M.
Richardson
,
J. Chem. Phys.
81
,
1975
(
1984
);
A. L.
Nichols
III
,
D.
Chandler
,
Y.
Singh
, and
D. M.
Richardson
,
J. Chem. Phys.
81
,
5109
(
1984
).,
J. Chem. Phys.
35.
H.
Tatlipinar
,
G.
Pastore
, and
M. P.
Tosi
,
Philos. Mag. Lett.
68
,
357
(
1993
).
36.
D. A. McQuarrie, Statistical Mechanics (Harper Collins, New York, 1976).
37.
J. P. Hansen and I. R. McDonald, Theory of Simple Liquids (Academic, London, 1990).
38.
H. L. Friedman, A Course in Statistical Mechanics (Prentice-Hall, Englewood Cliffs, NJ, 1985).
39.
B.
Widom
,
J. Chem. Phys.
39
,
2808
(
1963
).
40.
K. S.
Shing
and
K. E.
Gubbins
,
Mol. Phys.
46
,
1109
(
1982
).
41.
M. P. Allen, D. Tildesley, Computer Simulations of Liquids (Clarendon, Oxford, 1987).
42.
D. N.
Card
and
J. P.
Valleau
,
J. Chem. Phys.
52
,
6232
(
1970
).
43.
J. P.
Valleau
and
L. K.
Cohen
,
J. Chem. Phys.
72
,
5935
(
1980
).
44.
B. R.
Svensson
and
C. E.
Woodward
,
Mol. Phys.
64
,
247
(
1988
).
45.
H. L. Friedman, Ionic Solution Theory (Wiley, New York, 1962).
46.
R. P. Feynman, Statistical Mechanics (Addison-Wesley, Reading, MA, 1972).
47.
R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals (McGraw-Hill, New York, 1965).
48.
W. W. Wood, in Physics of Simple Liquids, edited by H. N. V. Temperley, J. S. Rowlinson, and G. S. Rushbrooke (North-Holland, Amsterdam, 1968), p. 115.
49.
J. C.
Rasaiah
,
H. L.
Friedman
,
J. Chem. Phys.
48
,
2742
(
1968
).
50.
Strictly speaking, the calculation of Ei requires the knowledge of the temperature derivative of the permittivity, leading to the known correction factor of 1+d ln ε/d ln T [see e.g.
N.
Bjerrum
,
Z. Phys. Chem.
119
,
145
(
1926
)]. As usual in RPM studies, this solvent-specific contribution is not considered in the present calculation.
51.
D.
Bratko
,
A.
Luzar
, and
S. H.
Chen
,
J. Chem. Phys.
89
,
545
(
1988
).
52.
A. R.
Alnatt
,
Mol. Phys.
8
,
533
(
1964
).
53.
H. L. Friedman and W. D. T. Dale, in Modern Theoretical Chemistry, edited by B. J. Berne, Vol. V of Statistical Mechanics, Part A (Plenum, New York, 1977).
54.
P. J.
Rossky
and
W. D. T.
Dale
,
J. Chem. Phys.
73
,
2457
(
1980
).
This content is only available via PDF.
You do not currently have access to this content.