Abinitio quantum mechanical methods have been applied to the distonic oxywater (H2OO+) and conventional hydrogen peroxide (HOOH+) cations. The investigation employed basis sets up to triple‐ζ plus double polarization plus f functions (TZ2Pf) and levels of correlation up to coupled‐cluster including single, double, and perturbatively treated connected triple excitations [CCSD(T)]. The HOOH+ cation, which is planar, has both trans (C2h) and cis (C2v) conformations, the former predicted to be 8 kcal mol−1 lower in energy. At the highest level of theory, the distonic H2OO+ structure is found to lie 23 kcal mol−1 above the conventional trans form. The barrier separating the oxywater cation from HOOH+ is about 33 kcal mol−1, roughly ten times larger than that for the neutral oxywater species. Accordingly, ionization greatly enhances the stability of the nonconventional oxywater structure. Harmonic vibrational frequencies and their infrared intensities are also reported for the H2O+2 species. Symmetry breaking of Hartree–Fock electronic wave functions is found in HOOH+, which adversely affects certain vibrational frequencies due to nearby singularities in related quadratic force constants. This problem is efficaciously overcome via Brueckner methods [BD and BD(T)].

1.
B. F.
Yates
,
W. J.
Bouma
, and
L.
Radom
,
Tetrahedron
42
,
6225
(
1986
).
2.
K. M.
Stirk
,
L. K. M.
Kiminkinen
, and
H. I.
Kenttamaa
,
Chem. Rev.
92
,
1649
(
1992
).
3.
R. H.
Nobes
,
W. J.
Bouma
,
J. K.
MacLeod
, and
L.
Radom
,
Chem. Phys. Lett.
135
,
78
(
1987
).
4.
(a)
C.
Meredith
,
T. P.
Hamilton
, and
H. F.
Schaefer
,
J. Phys. Chem.
96
,
9250
(
1992
);
(b)
H. H.
Huang
,
Y.
Xie
, and
H. F.
Schaefer
,
J. Phys. Chem.
100
,
6076
(
1996
).,
J. Phys. Chem.
5.
M. J.
Frisch
,
K.
Raghavachari
,
J. A.
Pople
,
W. J.
Bouma
, and
L.
Radom
,
Chem. Phys.
75
,
323
(
1983
).
6.
W. J.
Bouma
,
J. K.
MacLeod
, and
L.
Radom
,
J. Am. Chem. Soc.
102
,
2246
(
1980
).
7.
S.
Huzinaga
,
J. Chem. Phys.
42
,
1293
(
1965
).
8.
T. H.
Dunning
,
J. Chem. Phys.
53
,
2823
(
1970
).
9.
T. H.
Dunning
,
J. Chem. Phys.
55
,
716
(
1971
).
10.
J. D.
Goddard
,
N. C.
Handy
, and
H. F.
Schaefer
,
J. Chem. Phys.
71
,
1525
(
1979
).
11.
B. R.
Brooks
,
W. D.
Laidig
,
P.
Saxe
,
J. D.
Goddard
,
Y.
Yamaguchi
, and
H. F.
Schaefer
,
J. Chem. Phys.
72
,
4652
(
1980
);
J. E.
Rice
,
R. D.
Amos
,
N. C.
Handy
,
T. J.
Lee
, and
H. F.
Schaefer
,
J. Chem. Phys.
85
,
963
(
1986
).,
J. Chem. Phys.
12.
J.
Gauss
,
W. J.
Lauderdale
,
J. F.
Stanton
,
J. D.
Watts
, and
R. J.
Bartlett
,
Chem. Phys. Lett.
182
,
207
(
1991
).
13.
Y.
Osamura
,
Y.
Yamaguchi
,
P.
Saxe
,
D. J.
Fox
,
M. A.
Vincent
, and
H. F.
Schaefer
,
J. Mol. Struct.
103
,
183
(
1983
).
14.
PSI 2.0.8, C. L. Janssen, E. T. Seidl, G. E. Scuseria, T. P. Hamilton, Y. Yamaguchi, R. B. Remington, Y. Xie, G. Vacek, C. D. Sherrill, T. D. Crawford, J. T. Fermann, W. D. Allen, B. R. Brooks, G. B. Fitzgerald, D. J. Fox, J. F. Gaw, N. C. Handy, W. D. Laidig, T. J. Lee, R, M. Pitzer, J. E. Rice, P. Saxe, A. C. Scheiner, and H. F. Schaefer (PSITECH Inc., Watkinsville, GA, 1994).
15.
G. E.
Scuseria
,
Chem. Phys. Lett.
176
,
27
(
1991
);
K.
Raghavachari
,
G. W.
Trucks
,
J. A.
Pople
, and
M.
Head-Gordon
,
Chem. Phys. Lett.
157
,
479
(
1989
).
16.
K. A.
Brueckner
,
Phys. Rev.
96
,
508
(
1954
);
C. E.
Dykstra
,
Chem. Phys. Lett.
45
,
446
(
1977
).
17.
N. C.
Handy
,
J. A
Pople
,
M.
Head-Gordon
,
K.
Raghavachari
, and
G. W.
Trucks
,
Chem. Phys. Lett.
164
,
185
(
1989
).
18.
ACES II, authored by J. F. Stanton, J. Gauss, W. J. Lauderdale, J. D. Watts, and R. J. Bartlett.
19.
J. R.
Thomas
,
B. J.
DeLeeuw
,
G.
Vacek
,
T. D.
Crawford
,
Y.
Yamaguchi
, and
H. F.
Schaefer
,
J. Chem. Phys.
99
,
403
(
1993
).
20.
R. S.
Grev
,
C. L.
Janssen
, and
H. F.
Schaefer
,
J. Chem. Phys.
95
,
5128
(
1991
).
21.
Exploratory computations at the DZP CISD level have been used to reveal the broad features of the torsional potential of HOOH+. The vibrationless, adiabatic excitation energies (kcalmol−1) of the four lowest electronic states for the competing planar conformations are as follows: cis—2A2(9.0),B22(88.0),B21(105.9), and A21(117.7); and trans—2Bg(0.0),A2g(66.9),A2u(98.2), and B2u(170.0). Accordingly, in C2 symmetry the trans 2Bg ground state correlates to the cis 2B2 excited state [r(OH) = 1.003 Å,r(OO) = 1.286 Å, and θ(OOH) = 127.6°], while the trans 2Ag excited state [r(OH) = 0.996 Å,r(OO) = 1.339 Å, and θ(OOH) = 116.9°] connects to the cis 2A2 ground state. The one-dimensional torsional potential curves cross 34.1 kcalmol−1 above the trans minimum at a dihedral angle of 92.5°. This crossing point is actually a conical intersection with respect to distortions into C1 symmetry, and deflections off this point lead to the torsional transition state which directly connects the ground states of the cis and trans isomers: r(O1O2) = 1.348 Å,r(O1H3) = 1.003 Å,r(O2H4) = 0.992 Å,θ(O2O1H3) = 107.0°,θ(O1O2H4) = 107.9°, and τ(H3O1O2H4) = 89.4°. Through this saddle point the vibrationless trans→cis torsional barrier is 32.4 kcalmol−1. Alternate planar pathways for the isomerization were not explored.
22.
Diazene (N2H2), the well-known parent molecule for many azo compounds, has three isomers that correspond to those of the oxywater cation, or more properly the isoelectronic H2O22+ system. A DZP CASSCF study of N2H2 isomers is reported in
H. J. A.
Jensen
,
P.
Jo/rgensen
, and
T.
Helgaker
,
J. Am. Chem. Soc.
109
,
2895
(
1987
). The planar trans-diazene (HNNH) lies around 7 kcalmol−1 lower than its cis counterpart, as in the HOOH+ case. Unlike H2OO+, the isodiazene molecule (H2NN) retains planarity. The H2NN isomer is predicted to lie about 35 kcalmol−1 higher than trans-diazene with a rearrangement barrier near 47 kcalmol−1.
23.
W. D.
Allen
,
D. A.
Horner
,
R. L.
DeKock
,
R. B.
Remington
, and
H. F.
Schaefer
,
Chem. Phys.
133
,
11
(
1989
). A concise review of apposite literature on symmetry breaking phenomena appears therein.
24.
N. A.
Burton
,
Y.
Yamaguchi
,
I. L.
Alberts
, and
H. F.
Schaefer
,
J. Chem. Phys.
95
,
7466
(
1991
).
25.
D. A.
Horner
,
W. D.
Allen
, and
A. G.
Császár
,
Chem. Phys. Lett.
186
,
346
(
1991
).
26.
A. D.
McLean
,
B. H.
Lengsfield
III
,
J.
Pacansky
, and
Y.
Ellinger
,
J. Chem. Phys.
83
,
3567
(
1985
).
27.
R.
Lindh
and
L. A.
Barnes
,
J. Chem. Phys.
100
,
224
(
1994
).
28.
Y.
Yamaguchi
,
Y.
Xie
,
I. L.
Alberts
,
R. S.
Grev
, and
H. F.
Schaefer
,
J. Chem. Phys.
93
,
5053
(
1990
).
29.
L.
Engelbrecht
and
B.
Liu
,
J. Chem. Phys.
78
,
3097
(
1983
).
30.
C. F.
Jackels
and
E. R.
Davidson
,
J. Chem. Phys.
64
,
2908
(
1976
).
31.
E. R.
Davidson
and
W. T.
Borden
,
J. Phys. Chem.
87
,
4783
(
1983
).
32.
A. F.
Voter
and
W. A.
Goddard
III
,
Chem. Phys.
57
,
253
(
1981
);
A. F.
Voter
and
W. A.
Goddard
III
,
J. Chem. Phys.
75
,
3638
(
1981
);
A. F.
Voter
and
W. A.
Goddard
III
,
J. Am. Chem. Soc.
108
,
2830
(
1986
).
33.
J. F.
Stanton
,
J.
Gauss
, and
R. J.
Bartlett
,
J. Chem. Phys.
97
,
5554
(
1992
).
34.
L. A.
Barnes
and
R.
Lindh
,
Chem. Phys. Lett.
223
,
207
(
1994
).
This content is only available via PDF.
You do not currently have access to this content.