We develop a model for the adsorption of random heteropolymers onto solid surfaces from solutions that have a finite concentration of polymer. Previous studies that properly average over the quenched sequence distribution have been concerned with isolated chains near surfaces. Our self‐consistent‐field theory predicts a transition from situations where the surface segment density is enhanced compared with bulk solution concentration to one wherein the surface segment density is depleted. For a specific chemical identity of the random heteropolymer segments and the surface, this adsorption–depletion transition occurs above a threshold value of the strength of the sequence fluctuations. This intriguing finding can be tested directly via neutron scattering experiments (in the reflection mode), and offers opportunities for manipulating interfacial properties. The variation of the excess surface density of segments with polymer concentration in solution near the adsorption–depletion transition is also elucidated.

1.
A. K.
Chakraborty
and
M.
Tirrell
,
MRS Bull.
50
,
0000
(January
1996
).
2.
M. Karplus and E. I. Shakhnovich, in Protein Folding, edited by T. E. Creighton (Freeman, New York, 1995), pp. 127–195.
3.
H.
Frauenfelder
and
P. G.
Wolynes
,
Phys. Today
47
,
58
(
1994
).
4.
W.
Norde
and
A. C. I.
Anusien
,
Coll. Surf.
66
,
73
(
1992
).
5.
F. N.
Fu
,
M. P.
Fuller
, and
B. R.
Singh
,
Appl. Spectrosc.
47
,
98
(
1993
).
6.
D. I.
Lyman
,
K.
Knutson
,
B.
McNeil
, and
K.
Shilatani
,
Trans. Am. Soc. Artif. Int. Organs
21
,
49
(
1975
).
7.
G. H.
Fredrickson
and
S. T.
Milner
,
Phys. Rev. Lett.
67
,
835
(
1991
).
8.
G. H.
Fredrickson
,
S. T.
Milner
, and
L.
Leibler
,
Macromolecules
25
,
6341
(
1993
).
9.
E. I.
Shakhnovich
and
A. M.
Gutin
,
Nature
346
,
773
(
1990
).
10.
C.
Sfatos
,
A. M.
Gutin
, and
E. I.
Shakhnovich
,
Phys. Rev. E
48
,
465
(
1993
).
11.
A.
Sali
,
E. I.
Shakhnovich
, and
M.
Karplus
,
Nature
369
,
248
(
1994
).
12.
A. K.
Chakraborty
and
E. I.
Shakhnovich
,
J. Chem. Phys.
103
,
10751
(
1995
).
13.
V. S.
Pande
,
A. Y.
Grosberg
, and
T.
Tanaka
,
J. Phys. A
28
(
1995
).
14.
D.
Bratko
,
A. K.
Chakraborty
, and
E. I.
Shakhnovich
,
Phys. Rev. Lett.
76
,
1844
(
1996
).
15.
L.
Gutman
and
A. K.
Chakraborty
,
J. Chem. Phys.
101
,
10074
(
1994
).
16.
L.
Gutman
and
A. K.
Chakraborty
,
J. Chem. Phys.
103
,
10733
(
1995
).
17.
J.-F.
Joanny
,
J. Phys. II (Fr.)
4
,
1281
(
1994
).
18.
T.
Cosgrove
,
N.
Finch
, and
J. R. P.
Webster
,
Macromolecules
23
,
3353
(
1990
);
C. M.
Marquez
, and
J.-F.
Joanny
,
Macromolecules
23
,
268
(
1990
).,
Macromolecules
19.
B.
van Lent
and
J. M. H. M.
Scheutjens
,
J. Phys. Chem.
94
,
5033
(
1990
).
20.
C. A. J.
Hoeve
,
E. A.
diMarzio
, and
P.
Peyser
,
J. Chem. Phys.
42
,
2558
(
1965
).
21.
J. M. H. M.
Scheutjens
and
G. J.
Fleer
,
J. Phys. Chem.
83
,
1619
(
1979
).
22.
P.-G.
deGennes
,
Macromolecules
15
,
492
(
1982
).
23.
E.
Helfand
,
J. Chem. Phys.
62
,
999
(
1975
).
24.
R. J.
Roe
,
J. Chem. Phys.
60
,
4192
(
1974
).
25.
A.
Nesarikar
and
M.
Olivera de la Cruz
,
J. Chem. Phys.
98
,
7385
(
1993
).
26.
S. F.
Edwards
and
P. W.
Anderson
,
J. Phys. F
5
,
965
(
1975
).
27.
A.
Kholodenko
and
C.
Quian
,
Phys. Rev. B
40
,
2477
(
1989
).
28.
M. A.
Cohen Stuart
,
T.
Cosgrove
, and
B.
Vincent
,
Adv. Coll. Int. Sci.
24
,
143
(
1986
).
29.
K. H. Fischer and J. A. Hertz, Spin Glasses (Cambridge U.P., Cambridge, MA (1991).
30.
F. Candau and co-workers; see Ref. 17 for description of experiments.
This content is only available via PDF.
You do not currently have access to this content.