Several closely related third‐order nonlinear time‐resolved spectroscopic techniques, pump/probe transient absorption, transient grating, and three pulse stimulated photon echo peak shift measurements, are investigated theoretically and experimentally. It is shown in detail, through the consideration of response functions and numerical simulations including both finite pulse durations and detuning from exact resonance, how the solvation dynamics are manifested in these third‐order nonlinear time‐resolved spectroscopies. It is shown that the three pulse stimulated photon echo peak shift measurement and the transient grating measurement can give accurate dynamical information, whereas transient absorption may not be a reliable technique for a study of solvation dynamics in some cases. The contribution of very slow or static (inhomogeneous) components to the dynamics, however, can only be obtained from the three pulse echo peak shift measurements. Comprehensive experimental measurements are presented to illustrate and corroborate the calculations. We show that it is possible to separate the intramolecular vibrational and solvent contributions to the dephasing (or optical lineshape). Furthermore it is shown that the solvation of polar solutes in polar protic solvents has rather universal characteristics. The initial ultrafast process, usually identified as an inertial response of solvent molecules, occurs on a ∼100 fs time scale, and is essentially identical in methanol, ethanol, and butanol. The amplitude of this ultrafast component does, however, decrease with increasing alcohol size in 1‐alkanols. The diffusive (≳0.5 ps) regime of the solvation process shows a strong solvent dependence, and may be described satisfactorily by dielectric relaxation theories.

1.
J. T. Hynes, in Ultrafast Dynamics of Chemical Systems, edited by J. D. Simon (Kluwer, Dordrecht, 1994), p. 345.
2.
H.
Heitele
,
Angew. Chem. Int. Ed. Engl.
32
,
359
(
1993
).
3.
M. J.
Weaver
,
Chem. Rev.
92
,
463
(
1992
);
M. J.
Weaver
and
G. E.
McManis
,
Acc. Chem. Res.
23
,
294
(
1990
).
4.
P. J.
Rossky
and
J. D.
Simon
,
Nature
370
,
263
(
1994
).
5.
M.
Watanabe
,
T. T.
Woster
, and
R. W.
Murray
,
J. Phys. Chem.
95
,
4573
(
1991
).
6.
P. F.
Barbara
and
W.
Jarzeba
,
Adv. Photochem.
15
,
1
(
1990
).
7.
T. J.
Kang
,
W.
Jarzeba
,
P. F.
Barbara
, and
T.
Fonseca
,
Chem. Phys.
149
,
81
(
1990
);
K.
Tominaga
,
G. C.
Walker
,
T. J.
Kang
,
P. F.
Barbara
, and
T.
Fonseca
,
J. Phys. Chem.
95
,
10485
(
1991
).
8.
J. N.
Gehlen
,
M.
Marchi
, and
D.
Chandler
,
Science
263
,
499
(
1994
).
9.
B. B.
Smith
,
A.
Staib
, and
J. T.
Hynes
,
Chem. Phys.
176
,
521
(
1993
).
10.
J. S.
Bader
,
R. A.
Kuharski
, and
D.
Chandler
,
J. Chem. Phys.
93
,
230
(
1990
).
11.
H.
Sumi
and
R. A.
Marcus
,
J. Chem. Phys.
84
,
4894
(
1986
).
12.
X.
Song
and
R. A.
Marcus
,
J. Chem. Phys.
99
,
7768
(
1993
).
13.
I.
Rips
and
J.
Jortner
,
J. Chem. Phys.
87
,
6513
(
1987
).
14.
J. T.
Hynes
,
J. Phys. Chem.
90
,
3701
(
1986
).
15.
J. M.
Jean
,
R. A.
Friesner
, and
G. R.
Fleming
,
J. Chem. Phys.
96
,
5827
(
1992
);
J. M.
Jean
,
J. Chem. Phys.
101
,
10464
(
1994
).,
J. Chem. Phys.
16.
For a review and references, see
M. L.
Horng
,
J.
Gardecki
,
A.
Papazyan
, and
M.
Maroncelli
,
J. Phys. Chem.
99
,
17311
(
1995
).
17.
M.
Maroncelli
,
J. Mol. Liq.
57
,
1
(
1993
).
18.
M.
Maroncelli
and
G. R.
Fleming
,
J. Chem. Phys.
89
,
5044
(
1988
).
19.
M.
Maroncelli
,
J. Chem. Phys.
94
,
2084
(
1991
).
20.
E. A.
Carter
and
J. T.
Hynes
,
J. Chem. Phys.
94
,
5961
(
1991
).
21.
(a)
M.
Cho
,
G. R.
Fleming
,
S.
Saito
,
I.
Ohmine
, and
R.
Stratt
,
J. Chem. Phys.
100
,
6672
(
1994
);
(b)
B. M.
Ladanyi
and
R. M.
Stratt
,
J. Phys. Chem.
99
,
2502
(
1995
);
(c)
R. M.
Stratt
and
M.
Cho
,
J. Phys. Chem.
100
,
6700
(
1994
).,
J. Phys. Chem.
22.
S.
Roy
and
B.
Bagchi
,
J. Chem. Phys.
99
,
9938
(
1993
).
23.
F. O.
Raineri
,
H.
Resat
,
B.-C.
Perng
,
F.
Hirata
and
H. L.
Friedman
,
J. Chem. Phys.
100
,
1477
(
1994
).
24.
N. E.
Shemetulskis
and
R. F.
Loring
,
J. Chem. Phys.
97
,
1217
(
1992
).
25.
R.
Olender
and
A.
Nitzan
,
J. Chem. Phys.
102
,
7180
(
1995
).
26.
P. L.
Muiño
and
P. R.
Callis
,
J. Chem. Phys.
100
,
4093
(
1994
).
27.
B. D.
Bursulaya
,
D. A.
Zichi
, and
H. J.
Kim
,
J. Phys. Chem.
99
,
10069
(
1995
).
28.
S. J.
Rosenthal
,
X. L.
Xie
,
M.
Du
, and
G. R.
Fleming
,
J. Chem. Phys.
95
,
4715
(
1991
).
29.
S. J.
Rosenthal
,
R.
Jimennez
,
G. R.
Fleming
,
P. V.
Kumar
, and
M.
Maroncelli
,
J. Mol. Liq.
60
,
25
(
1994
).
30.
R.
Jimenez
,
G. R.
Fleming
,
P. V.
Kumar
, and
M.
Maroncelli
,
Nature
369
,
471
(
1994
).
31.
D.
Bingemann
and
A. P.
Baronavski
,
Chem. Phys. Lett.
201
,
153
(
1993
).
32.
X.
Zhang
,
M.
Kozik
,
N.
Sutin
, and
J. R.
Winkler
,
J. Am. Chem. Soc.
16
,
247
(
1991
).
33.
Y.
Lin
and
C. D.
Jonah
,
J. Phys. Chem.
97
,
295
(
1993
);
Y.
Lin
and
C. D.
Jonah
,
96
,
10119
(
1992
).,
J. Phys. Chem.
34.
H.
Pal
,
Y.
Nagasawa
,
K.
Tominaga
,
S.
Kumazaki
, and
K.
Yoshihara
,
J. Chem. Phys.
102
,
7758
(
1995
).
35.
T.
Gustavsson
,
G.
Baldacchino
,
J.-C.
Mialocq
, and
S.
Pommeret
,
Chem. Phys. Lett.
236
,
587
(
1995
).
36.
F. H.
Stillinger
and
T. A.
Weber
,
Phys. Rev.
25
,
978
(
1982
);
F. H.
Stillinger
and
T. A.
Weber
,
Science
225
,
983
(
1984
).
37.
I.
Ohmine
,
H.
Tanaka
, and
P. G.
Wolynes
,
J. Chem. Phys.
89
,
5822
(
1988
).
38.
T.
Joo
,
Y.
Jia
, and
G. R.
Fleming
,
J. Chem. Phys.
102
,
4063
(
1995
).
39.
In the spin-boson model, time scales and coupling strengths are characterized by means of a spectral density, J(ω). For a review see
A. J.
Leggett
,
S.
Chakravarty
,
A. T.
Dorsey
,
M. P. A.
Fisher
,
A.
Garg
, and
W.
Zwerger
,
Rev. Mod. Phys.
59
,
1
(
1987
).
40.
E. L.
Hahn
,
Phys. Rev.
80
,
580
(
1950
).
41.
N. A.
Kurnit
,
I. D.
Abella
, and
S. R.
Hartmann
,
Phys. Rev. Lett.
13
,
567
(
1964
);
I. D.
Abella
,
N. A.
Kurnit
, and
S. R.
Hartmann
,
Phys. Rev. Lett.
141
,
391
(
1965
).,
Phys. Rev. Lett.
42.
For a review see
J.
Friedrich
and
D.
Haarer
,
Angew. Chem. Int. Ed. Engl.
23
,
113
(
1984
).
43.
A. A.
Gorokhovskii
,
R. K.
Kaarli
, and
L. A.
Rebane
,
JETP Lett.
20
,
216
(
1974
);
B. M.
Kharlamov
,
R. I.
Personov
, and
L. A.
Bykovskaya
,
Opt. Comm.
12
,
191
(
1974
).
44.
T.
Joo
and
A. C.
Albrecht
,
Chem. Phys.
176
,
233
(
1993
).
45.
M.
Cho
and
G. R.
Fleming
,
J. Phys. Chem.
98
,
3478
(
1994
).
46.
T. J.
Kang
,
J.
Yu
, and
M.
Berg
,
J. Chem. Phys.
94
,
2413
(
1991
).
47.
M. T.
Asaki
,
C.-P.
Huang
,
D.
Garvey
,
J.
Zhou
,
H. C.
Kapteyn
, and
M. M.
Murnane
,
Opt. Lett.
18
,
977
(
1993
);
B.
Proctor
and
F.
Wise
,
Appl. Phys. Lett.
62
,
470
(
1993
);
A.
Stingl
,
C.
Spielmann
, and
F.
Krausz
,
Opt. Lett.
19
,
204
(
1994
).
48.
S. R.
Meech
,
A. J.
Hoff
, and
D. A.
Wiersma
,
Chem. Phys. Lett.
121
,
287
(
1985
);
S. R.
Meech
,
A. J.
Hoff
, and
D. A.
Wiersma
,
Proc. Natl. Acad. Sci. USA
83
,
9464
(
1986
).
49.
A. M.
Weiner
,
S.
De Silvestri
, and
E. P.
Ippen
,
J. Opt. Soc. Am. B
2
,
654
(
1985
).
50.
P. C.
Becker
,
H. L.
Fragnito
,
J. Y.
Bigot
,
C. H.
Brito Cruz
,
R. L.
Fork
, and
C. V.
Shank
,
Phys. Rev. Lett.
63
,
505
(
1989
).
51.
J.-Y.
Bigot
,
M. T.
Portella
,
R. W.
Schoenlein
,
C. J.
Bardeen
,
A.
Migus
, and
C. V.
Shank
,
Phys. Rev. Lett.
66
,
1138
(
1991
).
52.
E. T. J.
Nibbering
,
D. A.
Wiersma
, and
K.
Duppen
,
Phys. Rev. Lett.
66
,
2464
(
1991
).
53.
W. P.
de Boeij
,
M. S.
Pshenichnikov
,
K.
Duppen
, and
D. A.
Wiersma
,
Chem. Phys. Lett.
224
,
243
(
1994
).
54.
C. J.
Bardeen
and
C. V.
Shank
,
Chem. Phys. Lett.
203
,
535
(
1993
);
C. J.
Bardeen
and
C. V.
Shank
,
226
,
310
(
1994
).,
Chem. Phys. Lett.
55.
P.
Vöhringer
,
D. C.
Arnett
,
R. A.
Westervelt
,
M. J.
Feldstein
, and
N. F.
Scherer
,
J. Chem. Phys.
102
,
4027
(
1995
).
56.
P.
Vöhringer
,
D. C.
Arnett
,
T.-S.
Yang
, and
N. F.
Scherer
Chem. Phys. Lett.
237
,
387
(
1995
);
M. S.
Pshenichnikov
,
K.
Duppen
, and
D. A.
Wiersma
,
Phys. Rev. Lett.
74
,
674
(
1995
).
57.
W. P.
de Boeij
,
M. S.
Pshenichnikov
, and
D. A.
Wiersma
,
Chem. Phys. Lett.
238
,
1
(
1995
).
58.
Optical pure dephasing time is not well defined in liquid, since it is dependent on the measurement time scale. The time dependence originates from the finite time scale in M(t) as shown in Sec. III.
59.
M.
Cho
,
N. F.
Scherer
,
G. R.
Fleming
, and
S.
Mukamel
,
J. Chem. Phys.
96
,
5618
(
1992
);
M.
Cho
and
G. R.
Fleming
,
J. Chem. Phys.
98
,
2848
(
1993
).,
J. Chem. Phys.
60.
S.
Savikhin
and
W. S.
Struve
,
Biophys. J.
67
,
2002
(
1994
).
61.
S. Y.
Goldberg
,
E.
Bart
,
A.
Meltsin
,
B. D.
Fainberg
, and
D.
Huppert
,
Chem. Phys.
183
,
217
(
1994
). For a recent review of transient grating method, see F.-W. Deeg, in Dynamics During Spectroscopic Transitions, edited by E. Lippert and J. D. Macomber (Springer, New York, 1995), p. 456.
62.
A. B.
Myers
,
J. Opt. Soc. Am. B
7
,
1665
(
1990
);
M. K.
Lawless
and
R. A.
Mathies
,
J. Chem. Phys.
96
,
8037
(
1992
);
E. T. J.
Nibbering
,
D. A.
Wiersma
, and
K.
Duppen
,
Chem. Phys.
183
,
167
(
1994
).
63.
E. W.
Castner
, Jr.
,
M.
Maroncelli
, and
G. R.
Fleming
,
J. Chem. Phys.
86
,
1090
(
1987
).
64.
B.
Bagchi
,
D. W.
Oxtoby
, and
G. R.
Fleming
,
Chem. Phys.
86
,
257
(
1984
).
65.
Y. J.
Yan
and
S.
Mukamel
,
Phys. Rev. A
41
,
6485
(
1990
).
66.
T.
Joo
,
Y.
Jia
,
J.-Y.
Yu
,
D. M.
Jonas
, and
G. R.
Fleming
,
J. Phys. Chem.
100
,
2399
(
1996
).
67.
(a) S. Mukamel, Principles of Nonlinear Optical Spectroscopy (Oxford, New York, 1995);
(b)
S.
Mukamel
,
Annu. Rev. Phys. Chem.
41
,
647
(
1990
);
(c)
Y. J.
Yan
and
S.
Mukamel
,
J. Chem. Phys.
94
,
179
(
1991
).
68.
E.
Hanamura
,
J. Phys. Soc. Jpn.
52
,
2258
(
1983
).
69.
B. D.
Fainberg
,
Opt. Spectrosc.
55
,
669
(
1983
).
70.
R.
Kubo
,
Adv. Chem. Phys.
15
,
101
(
1969
).
71.
When the excited state population relaxes to a third state such as a triplet state T1, it decays by the ground state recovery time, not by the decay time to T1.
72.
N. F.
Scherer
,
D. M.
Jonas
, and
G. R.
Fleming
,
J. Chem. Phys.
99
,
153
(
1993
).
73.
The change in the environment during time T initiated by an electronic transition causes the energy change of both the electronic excited and the electronic ground states.
74.
L. J.
Root
,
J. Chem. Phys.
93
,
4364
(
1990
).
75.
R. F.
Loring
and
S.
Mukamel
,
Chem. Phys. Lett.
114
,
426
(
1985
).
76.
τc = ∫0M(t)dt.
77.
M. Cho, J.-Y. Yu, T. Joo, and G. R. Fleming, J. Phys. Chem. (in press).
78.
L. E.
Fried
,
N.
Bernstein
, and
S.
Mukamel
,
Phys. Rev. Lett.
68
,
1842
(
1992
).
79.
E. W.
Castner
, Jr.
,
Y. J.
Chang
,
Y. C.
Chu
, and
G. E.
Walrafen
,
J. Chem. Phys.
102
,
653
(
1994
).
80.
M. W.
Balk
and
G. R.
Fleming
,
J. Chem. Phys.
83
,
4300
(
1985
).
81.
(a)
P.
Cong
,
H. P.
Deuel
, and
J. D.
Simon
,
Chem. Phys. Lett.
212
,
367
(
1993
);
(b)
P.
Cong
,
Y. J.
Yan
,
H. P.
Deuel
, and
J. D.
Simon
,
J. Chem. Phys.
100
,
7855
(
1993
).
82.
G.
Stock
and
W.
Domcke
,
Phys. Rev. A
45
,
3032
(
1992
).
83.
Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York, 1984).
84.
I. A.
Walmsley
,
M.
Mitsunaga
, and
C. L.
Tang
,
Phys. Rev. A
38
,
4681
(
1988
).
85.
M.
Chachisvilis
,
H.
Fidder
, and
V.
Sundström
,
Chem. Phys. Lett.
234
,
141
(
1995
).
86.
E.
Gaizauskas
and
L.
Valkunas
,
Opt. Comm.
109
,
75
(
1994
).
87.
W. B.
Bosma
,
Y. J.
Yan
, and
S.
Mukamel
Phys. Rev. A
42
,
6920
(
1990
).
88.
K.
Leo
,
M.
Wegener
,
J.
Shah
,
D. S.
Chemla
,
E. O.
Göbel
,
T. C.
Damen
,
S.
Schmitt-Rink
, and
W.
Schäfer
,
Phys. Rev. Lett.
65
,
1340
(
1990
).
89.
M.
van Burgel
,
D. A.
Wiersma
, and
K.
Duppen
,
J. Chem. Phys.
102
,
20
(
1995
).
90.
S.
Wu
,
X.-C.
Zhang
, and
R. L.
Fork
,
Appl. Phys. Lett.
61
,
919
(
1992
).
91.
R. B.
Thompson
,
J. K.
Frisoli
, and
J. R.
Lakowicz
,
Anal. Chem.
64
,
2075
(
1992
).
92.
H.
Barkhuijsen
,
R.
de Beer
,
W. M. M. J.
Bovée
, and
D.
van Ormondt
,
J. Mag. Res.
61
,
465
(
1985
).
93.
F. W.
Wise
,
M. J.
Rosker
,
G. L.
Millhauser
, and
C. L.
Tang
,
IEEE J. Quant. Elect.
QE-23
,
1116
(
1987
).
94.
G. S.
Beddard
,
T.
Doust
, and
G.
Porter
,
Chem. Phys.
61
,
17
(
1981
).
95.
P. A.
Anfinrud
and
W. S.
Struve
,
J. Chem. Phys.
87
,
4256
(
1987
).
96.
T.
Joo
and
A. C.
Albrecht
,
Chem. Phys.
173
,
171
(
1993
).
97.
D. M.
Jonas
,
S. E.
Bradforth
,
S. A.
Passino
, and
G. R.
Fleming
,
J. Phys. Chem.
99
,
2594
(
1995
).
98.
S.
Creighton
,
J. K.
Hwang
,
A.
Warshel
,
W. W.
Parson
, and
J.
Norris
,
Biochemistry
27
,
774
(
1988
);
R.
Egger
and
C. H.
Mak
,
J. Phys. Chem.
98
,
9903
(
1994
);
M.
Cho
and
R. J.
Silbey
,
J. Chem. Phys.
103
,
595
(
1995
).
99.
W.
Bosma
,
Y. J.
Yan
, and
S.
Mukamel
,
Phys. Rev. A
42
,
6920
(
1990
).
100.
P. G.
Wolynes
,
J. Chem. Phys.
86
,
5133
(
1987
).
101.
I.
Rips
,
J.
Klafter
, and
J.
Jortner
,
J. Chem. Phys.
89
,
4288
(
1988
).
102.
M.
Maroncelli
and
G. R.
Fleming
,
J. Chem. Phys.
89
,
875
(
1988
).
103.
P. V.
Kumar
and
M.
Maroncelli
,
J. Chem. Phys.
103
,
3088
(
1995
).
104.
D.
McMorrow
,
W. T.
Lotshaw
, and
G. A.
Kenney-Wallace
,
IEEE J. Quant. Elec.
QE-24
,
443
(
1988
);
D.
McMorrow
and
W. T.
Lotshaw
,
J. Phys. Chem.
95
,
10395
(
1991
);
D.
McMorrow
and
W. T.
Lotshaw
,
Chem. Phys. Lett.
201
,
369
(
1993
).
105.
S.
Ruhman
,
B.
Kohler
,
A. G.
Joly
, and
K. A.
Nelson
,
J. Chem. Phys.
141
,
16
(
1987
);
S.
Ruhman
,
A. G.
Joly
, and
K. A.
Nelson
,
IEEE J. Quan. Elec.
QE-24
,
470
(
1988
);
S.
Ruhman
and
K. A.
Nelson
,
J. Chem. Phys.
94
,
859
(
1991
).
106.
M.
Cho
,
M.
Du
,
N. F.
Scherer
,
L. D.
Ziegler
, and
G. R.
Fleming
,
J. Chem. Phys.
96
,
5033
(
1992
).
107.
J.
Etchepare
,
G.
Frillon
,
G.
Hamoniaux
, and
A.
Orszag
,
Opt. Comm.
63
,
329
(
1987
).
108.
Y. J.
Chang
and
E. W.
Castner
, Jr.
,
J. Chem. Phys.
99
,
113
(
1993
).
109.
For example, see
G. J.
Davies
and
M.
Evans
,
J. Chem. Soc. Faraday II
72
,
1194
(
1975
).
110.
Y. Nagasawa, S. Passino, T. Joo, and G. R. Fleming (in preparation).
111.
B. M. Ladanyi and S. Klein (private communication).
112.
D. Lee and A. C. Albrecht, in Advances in Infrared and Raman Spectroscopy, edited by R. J. Clark and R. E. Hester (Wiley Heyden, New York, 1985), Vol. 12.
113.
S. Y.
Yee
,
T. K.
Gustafson
,
S. A. J.
Druet
, and
J.-P. E.
Taran
,
Opt. Comm.
23
,
1
(
1977
).
This content is only available via PDF.
You do not currently have access to this content.