Interrelationships between time‐correlation functions for molecular reorientation, their apparent memory functions and dielectric permittivity for the α relaxation in glass‐forming liquids and amorphous polymers are considered briefly and a method is given for the determination of an apparent first‐order memory function K̃1(ω) in the frequency domain from dielectric relaxation data. For the Kohlrausch–Williams–Watts (KWW) function and the Cole–Cole function and for experimental data for three amorphous polymers it is shown that the real and imaginary components of K̃1(ω) increase without limit as frequency f(=ω/2π) is increased. The physical significance of such apparent memory functions is considered in view of this behavior and the recent experimental studies of the α relaxation in polymers by Schmidt–Rohr and Spiess and in glass‐forming liquids by Cicerone and Ediger, who suggest that a ‘‘dynamic heterogeneity’’ is present that leads to a broad distribution of relaxation times where each elementary process has no proper memory. For such cases it appears that the apparent memory functions are simply related to the parameters characterizing the distribution and may have no physical significance for the α process in glass‐forming materials.

1.
N. G. McCrum, B. E. Read, and G. Williams, Anelastic and Dielectric Effects in Polymeric Solids (Dover, New York, 1991).
2.
G. Williams, in Dielectric and Related Molecular Processes, Spec. Period. Reports (The Chemical Society, London, 1975), p. 151.
3.
G. Williams, in Comprehensive Polymer Science, edited by G. Allen and J. C. Bevington (Pergamon, Oxford, 1989), Vol. 2, Chap. 7, p. 601.
4.
J. D. Ferry, Viscoelastic Properties of Polymers (Wiley, New York, 1980), 3rd ed.
5.
V. Rosato and G. Williams, in Molecular Interactions, edited by H. Ratajczak and W. J. Orville-Thomas (Wiley, New York, 1980), Vol. 3, Chap. 8, p. 373.
6.
G. Meier and G. Fytas, in Optical Techniques to Characterize Polymer Systems, edited by H. Bässler (Elsevier, Amsterdam, 1989).
7.
J. S. Higgins and H. Benoit, High Polymers and Neutron Scattering (Oxford University Press, Oxford, 1994).
8.
K.
Schmidt-Rohr
and
H. W.
Spiess
,
Phys. Rev. Lett.
66
,
3020
(
1991
).
9.
K. Schmidt-Rohr and H. W. Spiess, Multi-dimensional Solid State NMR and Polymers (Academic, London, 1994).
10.
L. Monnerie, in Static and Dynamic Properties of the Polymeric Solid State, NATO ASI, edited by R. A. Pethrick and R. W. Richards (Reidel, Dordrecht, Holland, 1982), p. 383.
11.
M. T.
Cicerone
,
F. R.
Blackburn
, and
M. F.
Ediger
,
J. Chem. Phys.
102
,
471
(
1995
).
12.
P. D.
Hyde
,
T. E.
Evert
,
M. T.
Cicerone
, and
M. D.
Ediger
,
J. Non. Cryst. Solids
131–133
,
42
(
1991
).
13.
S.
Matsuoka
,
G.
Williams
,
G. E.
Johnson
,
E. W.
Anderson
, and
T.
Furukawa
,
Macromolecules
18
,
2652
(
1985
).
14.
S. Matsuoka, Relaxation Phenomena in Polymers (Hanser, Munich, 1992).
15.
I. M.
Hodge
,
J. Non Cryst. Solids
,
169
,
211
(
1994
).
16.
J. Wong and C. A. Angell, Glass: Structure by Spectroscopy (Marcel Dekker, Basel, 1976).
17.
G.
Williams
,
Adv. Polym. Sci.
33
,
60
(
1979
).
18.
G. Williams, in Materials Science and Technology, edited by E. L. Thomas (VCH, Weinheim, 1992), Vol. 12, Chap. 11, p. 471.
19.
The proceedings of the 1st and 2nd International Meetings on Relaxations in Complex Systems, organized by K. L. Ngai and G. B. Wright in Crete in 1989 and by K. L. Ngai, G. B. Wright, and E. Riande in Alicante in 1993, were published as special issues of J. Non Cryst. Solids 131–133, (1991) and 172–174, (1994) respectively. These issues contain many papers pertaining to the multiple relaxations in glass-forming liquids and polymers as studied by different techniques.
20.
G.
Williams
,
Trans. Faraday Soc.
62
,
2091
(
1966
).
21.
G. Williams and D. C. Watts, in Nuclear Magnetic Resonance, Basic Principles and Progress, Vol. 4, NMR of Polymers (Springer-Verlag, Berlin, 1971), p. 271.
22.
R.
Kohlrausch
,
Ann. Phys. (Leipzig)
12
,
393
(
1847
).
23.
G.
Williams
and
D. C.
Watts
,
Trans. Faraday Soc.
66
,
80
(
1970
).
24.
G.
Williams
,
D. C.
Watts
,
S. B.
Dev
, and
A. M.
North
,
Trans. Faraday Soc.
67
,
1323
(
1971
).
25.
G.
Williams
,
Trans. Electr. Insul., IEEE
E1–20
,
843
(
1985
).
26.
G.
Williams
,
Trans. Electr. Insul., IEEE
E1–17
,
469
(
1982
).
27.
W. Götze, in Liq. Crist. Vitreuse, edited by J. P. Hansen, D. Levesque, and J. Zimm-Justin (North-Holland, Amsterdam, 1988), p. 287.
28.
W.
Götze
,
Rep. Progr. Phys.
55
,
241
(
1992
).
29.
G. F.
Mazenko
,
J. Non Cryst. Solids
131–133
,
120
(
1991
).
30.
J. F.
Douglas
and
J. B.
Hubbard
,
Macromolecules
24
,
3163
(
1991
).
31.
B. J. Berne, in Physical Chemistry, An Advanced Treatise, Vol. VIIIB, The Liquid State, edited by H. Eyring, W. Jost, and D. Henderson (Academic, New York, 1971), p. 540.
32.
G.
Williams
,
Chem. Rev.
72
,
55
(
1972
).
33.
G.
Williams
,
Chem. Soc. Rev.
7
,
89
(
1978
).
34.
M.
Cook
,
D. C.
Watts
, and
G.
Williams
,
Trans. Faraday Soc.
66
,
2503
(
1970
).
35.
D. W.
Davidson
and
R. H.
Cole
,
J. Chem. Phys.
18
,
417
(
1950
).
36.
K. S.
Cole
and
R. H.
Cole
,
J. Chem. Phys.
9
,
341
(
1941
).
37.
S.
Havriliak
and
S.
Negami
,
J. Polym. Sci. C
14
,
99
(
1966
).
38.
N.
Koizumi
and
Y.
Kita
,
Bull. Inst. Chem. Res. Kyoto Univ.
56
,
300
(
1978
).
39.
G. D.
Patterson
,
C. P.
Lindsey
, and
J. R.
Stevens
,
J. Chem. Phys.
70
,
643
(
1979
).
40.
M. T. Cicerone and M. D. Ediger, J. Chem. Phys. (submitted).
41.
V. Daniel, Dielectric Relaxation (Academic, London, 1967), p. 57.
42.
M. Schroeder, Fractals, Chaos and Power Laws (Freeman, New York, 1991).
43.
Note that although the dynamic heterogeneity model implies independent parallel processes within the overall time-scale for an ℵ-relaxation process, all relaxors must be equivalent dynamically for T>Tg (i.e., it is an ergodic system when proper statistical averaging is made for the ensemble). This means that relaxors that are “slow“ at t = 0 become “fast“ at later times, fast relaxors at t = 0 become slow at later times and the entire distribution of relaxation times is spanned, on average, by each relaxor.
This content is only available via PDF.
You do not currently have access to this content.