Localized excitations (tunneling modes, soft harmonic vibrations) are believed to play a dominant role in the thermodynamics and transport properties of glasses at low temperature. Using instantaneous normal‐mode (INM) analysis, we explore the role that such localization plays in determining the behavior of such systems in the vicinity of the glass transition. Building on our previous study [Phys. Rev. Lett. 74, 936 (1995)] we present evidence that the glass transition in two simple model systems is associated with a transition temperature below which all un‐ stable INM’s become localized. This localization transition is a possible mechanism for the change in diffusion mechanism from continuous flow to localized hopping that is believed to occur in fragile glass formers at a temperature just above Tg.

1.
Here, we use the more restrictive definition of a glass as being an amorphous solid produced by quenching a liquid through a glass transition.
2.
R.
Zeller
and
R.
Pohl
,
Phys. Rev. B
4
,
2029
(
1971
).
3.
R.
Stephens
,
Phys. Rev. B
8
,
2896
(
1973
).
4.
S.
Hunklinger
and
A.
Raychoudhuri
,
Prog. Low Temp. Phys.
9
,
267
(
1986
).
5.
P.
Anderson
,
B.
Halperin
, and
C.
Varma
,
Philos. Mag.
25
,
1
(
1972
).
6.
W.
Phillips
,
J. Low Temp. Phys.
7
,
351
(
1972
).
7.
H.
Schober
and
B.
Laird
,
Phys. Rev. B
44
,
6746
(
1991
).
8.
U.
Buchenau
,
U.
Buchenau
,
M.
Prager
,
N.
Nucker
,
A. J.
Dianoux
,
N.
Ahamad
, and
W. A.
Phillips
,
Phys. Rev. B
34
,
5665
(
1986
).
9.
B.
Laird
and
H.
Schober
,
Phys. Rev. Lett.
66
,
636
(
1991
).
10.
J.
Hafner
and
M.
Krajci
,
J. Phys. Condens. Matter
6
,
4631
(
1994
).
11.
U.
Buchenau
,
Y.
Galperin
,
V.
Gurevich
, and
H.
Schober
,
Phys. Rev. B
43
,
5039
(
1991
).
12.
A.
Heuer
and
R.
Silbey
,
Phys. Rev. Lett.
70
,
3911
(
1993
).
13.
V.
Karpov
,
M.
Klinger
, and
F.
Ignt́ev
,
Sov. Phys. JETP
57
,
439
(
1983
).
14.
A.
Sokolov
,
A.
Rosser
,
A.
Kisliuk
, and
D.
Quitmann
,
Phys. Rev. Lett.
71
,
2062
(
1993
).
15.
V.
Malinovsky
and
V.
Novikov
,
J. Phys. Condens. Matter
4
,
L139
(
1992
).
16.
R. Zallen, The Physics of Amorphous Systems (Wiley, New York, 1983).
17.
J.
Ullo
and
S.
Yip
,
Phys. Rev. A
39
,
5877
(
1989
).
18.
D.
Thirumalai
and
R.
Mountain
,
Phys. Rev. E
47
,
479
(
1993
).
19.
W. Götze, in Liquids, Freezing and the Glass Transition, edited by D. L. J. P. Hansen and J. Zinn-Justin (North-Holland, New York, 1991), p. 287.
20.
H.
Cummins
,
W. M.
Du
,
M.
Fuchs
,
W.
Götze
,
S.
Hildebrand
,
A.
Latz
,
G.
Li
, and
N. J.
Tao
,
Phys. Rev. E
47
,
4223
(
1993
).
21.
A.
Angell
,
J. Non-Cryst. Solids
73
,
1
(
1985
).
22.
R.
Cotterill
and
J.
Madsen
,
Phys. Rev. B
33
,
262
(
1986
).
23.
B.-C.
Xu
and
R.
Stratt
,
J. Chem. Phys.
92
,
1923
(
1990
).
24.
G.
Seeley
and
T.
Keyes
,
J. Chem. Phys.
91
,
5581
(
1989
).
25.
B.
Madan
,
T.
Keyes
, and
G.
Seeley
,
J. Chem. Phys.
92
,
7565
(
1990
).
26.
J.
Adams
and
R.
Stratt
,
J. Chem. Phys.
93
,
1632
(
1990
).
27.
B.
Madan
,
T.
Keyes
, and
G.
Seeley
,
J. Chem. Phys.
94
,
6762
(
1991
).
28.
G.
Seeley
,
T.
Keyes
, and
B.
Madan
,
J. Chem. Phys.
95
,
3847
(
1991
).
29.
M.
Buchner
,
B.
Ladanyi
, and
R.
Stratt
,
J. Chem. Phys.
97
,
8522
(
1992
).
30.
R.
Sharma
,
K.
Tankeshwar
, and
K.
Pathak
,
J. Phys. Condens. Matter
7
,
537
(
1995
).
31.
M.
Goldstein
,
J. Chem. Phys.
51
,
3728
(
1969
).
32.
R.
Zwanzig
,
J. Chem. Phys.
79
,
4507
(
1983
).
33.
P.
Moore
and
T.
Keyes
,
J. Chem. Phys.
100
,
6709
(
1994
).
34.
S.
Bembenek
and
B.
Laird
,
Phys. Rev. Lett.
74
,
936
(
1995
).
35.
T.
Keyes
,
J. Chem. Phys.
101
,
5081
(
1994
).
36.
M.
Cho
,
G. R.
Fleming
,
S.
Saito
,
I.
Ohmine
, and
R.
Stratt
,
J. Chem. Phys.
100
,
6672
(
1994
).
37.
M. Allen and D. Tildesley, Computer Simulation of Liquids (Oxford Science, Oxford, 1987).
38.
G.
Vijayadamodar
and
A.
Nitzan
,
J. Chem. Phys.
103
,
2169
(
1995
).
39.
U. Zurcher and B. B. Laird (unpublished).
This content is only available via PDF.
You do not currently have access to this content.