An effective and flexible numerical scheme is proposed to simulate the dissipative quantum dynamics of a linearized system–bath Hamiltonian. Based on the observation that the Feynman path integrals for a Gaussian bath have a quadratic functional form, the bath average can be performed by directly sampling paths of the discretized harmonic modes and then propagating the system under the influence of quantum Gaussian force. The algorithm is amenable to all known quantum propagation methods and can thus be flexibly applied to study quantum dissipation in the condensed phase. Nontrivial numerical examples based on the spin‐boson and damped quantum oscillator models are presented to demonstrate the application of the new algorithm.
REFERENCES
1.
R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals (McGraw-Hill, New York, 1965).
2.
3.
L. S. Schulman, Techniques and Applications of Path Integration (Wiley, New York, 1986).
4.
J. D. Doll and J. E. Gubernatis, Quantum Simulations of Condensed Matter Phenomena (World Scientific, Singapore, 1990).
5.
D. Chandler, in Liquides, Cristallisation et Transition Vitreuse Les Houches, Session LI, edited by D. Levesque, J. Hansen, and J. Zinn-Justin (Elsevier, New York, 1991).
6.
M. S. Swanson, Path Integrals and Quantum Processes (Academic, San Diego, 1992).
7.
8.
9.
10.
11.
12.
13.
J.
Lobaugh
and G. A.
Voth
, J. Chem. Phys.
104
, (1996
). This paper describes a CMD simulation of excess proton transport in liquid water.14.
J. Lobaugh, M. Pavese, and G. A. Voth, J. Chem. Phys. (to be published). This paper describes a CMD simulation of quantum water.
15.
M. Pavese and G. A. Voth, Chem. Phys. Lett. (in press). This paper describes a CMD simulation of self-diffusion in liquid para-hydrogen.
16.
G. A. Voth, Adv. Chem. Phys. (in press).
17.
18.
19.
20.
21.
R. P. Feynman, Statistical Mechanics (Addison-Wesley, MA, 1972), Chap. 3.
22.
23.
24.
25.
26.
27.
28.
A. J.
Leggett
, S.
Chakravarty
, A. T.
Dorsey
, M. P. A.
Fisher
, A.
Garg
, and W.
Zwerger
, Rev. Mod. Phys.
59
, 1
(1987
).29.
30.
31.
32.
33.
34.
D.
Thirumalai
, E. J.
Bruskin
, and B. J.
Berne
, J. Chem. Phys.
79
, 5063
(1983
).35.
36.
37.
38.
39.
J.
Doll
, R.
Coalson
, and D.
Freeman
, J. Chem. Phys.
87
, 1641
(1987
).40.
41.
42.
43.
R.
Giachetti
and V.
Tognetti
, Phys. Rev. Lett.
55
, 912
(1985
).44.
45.
46.
47.
G. A.
Voth
, D.
Chandler
, and W. H.
Miller
, J. Chem. Phys.
91
, 7749
(1989
).48.
G. A.
Voth
, J. Phys. Chem.
97
, 8365
(1993
). For a review of path integral quantum transition state theory, see this paper.49.
50.
This content is only available via PDF.
© 1996 American Institute of Physics.
1996
American Institute of Physics
You do not currently have access to this content.