A semiclassical theory of multidimensional tunneling is formulated to calculate the tunneling wave function, energy splitting in a double well and decay rate constant from a metastable state. First, the tunneling wave function is calculated by analytic continuation of a quantized torus prepared in analytic forms using either the Chapman–Garrett–Miller method or the Birkhoff–Gustavson normal form method. For a weakly nonintegrable system, tunnelings are confirmed to be classified into two qualitatively different domains; pure tunneling in the I region and mixed tunneling in the C region. Semiclassical wave functions agree with quantum mechanical ones within a few percent both in classically allowed and tunneling regions. Breakdown of this simple picture is exemplified for cases of relatively strong couplings. Second, expressions of the tunneling energy splitting in a double well potential and the decay rate from a metastable state are derived. The wave function near a well formulated above is connected with the semiclassical Green’s function in the deep tunneling region. The latter is expressed by complex trajectories which start from the complex quantized torus. A preliminary numerical comparison with the quantum mechanical value is also done for the energy splitting.

1.
Chem. Phys. special issue on Tunneling in Chemical Reactions, edited by V. A. Benderskii, V. I. Goldanskii, and J. Jortner, 170, 265 (1993);
V. A.
Benderskii
,
D. E.
Makarov
, and
C. A.
Wight
,
Adv. Chem. Phys.
88
,
1
(
1994
).
2.
P.
Hänggi
,
P.
Talkner
, and
M.
Borkovec
,
Rev. Mod. Phys.
62
,
251
(
1990
).
3.
U. Weiss, Quantum Dissipative Systems (World Scientific, Singapore, 1993).
4.
M. S. Child, Semiclassical Mechanics with Molecular Applications (Clarendon, Oxford, 1991).
5.
O.
Bohigas
,
S.
Tomsovic
, and
D.
Ullmo
,
Phys. Rep.
223
,
43
(
1993
).
6.
N.
Takigawa
,
K.
Hagino
,
M.
Abe
, and
A. B.
Balantekin
,
Phys. Rev. C.
49
,
2636
(
1994
).
7.
A. O.
Caldeira
and
A. J.
Leggett
,
Ann. Phys. (NY)
149
,
374
(
1983
);
A. O.
Caldeira
and
A. J.
Leggett
,
153
,
445
(E) (
1984
).,
Ann. Phys. (N.Y.)
8.
V. A.
Benderskii
,
D. E.
Makarov
, and
P. G.
Grinevich
,
Chem. Phys.
170
,
275
(
1993
).
9.
S. Coleman, in The Whys of Subnuclear Physics, edited by A. Zichichi (Plenum, New York, 1979).
10.
C. G.
Callan
, Jr.
and
S.
Coleman
,
Phys. Rev. D.
16
,
1762
(
1977
).
11.
A.
Auerbach
and
S.
Kivelson
,
Nucl. Phys. B
257
, (
FS14
),
799
(
1985
).
12.
Z. H.
Huang
,
T. E.
Feuchtwang
,
P. H.
Cutler
, and
E.
Kazes
,
Phys. Rev. A.
41
,
32
(
1990
).
13.
W. H.
Miller
and
T. F.
George
,
J. Chem. Phys.
56
,
5668
(
1972
);
T. F.
George
and
W. H.
Miller
,
J. Chem. Phys.
56
,
5722
(
1972
); ,
J. Chem. Phys.
T. F.
George
and
W. H.
Miller
,
57
,
2458
(
1972
).,
J. Chem. Phys.
14.
W. H.
Miller
,
Adv. Chem. Phys.
25
,
69
(
1974
).
15.
R. A.
Marcus
and
M. E.
Coltrin
,
J. Chem. Phys.
67
,
2609
(
1977
).
16.
M.
Ya. Ovchinnikova
,
Chem. Phys.
36
,
85
(
1979
).
17.
D. G. Truhlar, A. D. Isaacson, and B. C. Garrett, Theory of Chemical Reaction Dynamics, edited by M. Baer (Chemical Rubber, Boca Raton, 1985), Vol. 4.
18.
N.
Shida
,
P. F.
Barbara
, and
J. E.
Almlöf
,
J. Chem. Phys.
91
,
4061
(
1989
).
19.
S.
Takada
and
H.
Nakamura
,
J. Chem. Phys.
100
,
98
(
1994
).
20.
S.
Takada
and
H.
Nakamura
,
J. Chem. Phys.
102
,
3977
(
1995
).
21.
K.
Takatsuka
and
H.
Ushiyama
,
Phys. Rev. A
51
,
4353
(
1995
).
22.
R.
Balian
and
C.
Bloch
,
Ann. Phys. (NY)
85
,
514
(
1974
).
23.
M.
Wilkinson
,
Physica D
21
,
341
(
1986
);
In Eq. (3.18), the factor 4πi should be read as −2πi [M. Wilkinson and P. N. Walker (private communication)].
24.
M.
Wilkinson
and
J. H.
Hannay
,
Physica D
27
,
201
(
1987
).
25.
A.
Shudo
and
K.
Ikeda
,
Phys. Rev. Lett.
74
,
682
(
1995
).
26.
S. C.
Creagh
,
J. Phys. A
27
,
4969
(
1994
).
27.
V. I. Arnold and A. Avex, Problèmes Ergodiques de la Mécanique Classiqe (Gauthier-Villars, Paris, 1967).
28.
J. M.
Greene
and
I. C.
Percival
,
Physica D.
3
,
530
(
1981
).
29.
Y. F.
Chang
,
M.
Tabor
, and
J.
Weiss
,
J. Math. Phys.
23
,
531
(
1982
);
Y. F.
Chang
,
J. M.
Greene
,
M.
Tabor
, and
J.
Weiss
,
Physica D
8
,
183
(
1983
).
30.
Y.
Tomioka
,
M.
Ito
, and
N.
Mikami
,
J. Phys. Chem.
87
,
4401
(
1983
).
31.
R. L.
Redington
,
Y.
Chen
,
G. J.
Scherer
, and
R. W.
Field
,
J. Chem. Phys.
88
,
627
(
1988
).
32.
H.
Sekiya
,
Y.
Nagashima
, and
Y
Nishimura
,
J. Chem. Phys.
92
,
5761
(
1990
).
33.
H
Werner
,
C.
Bauer
,
P.
Rosmus
,
H.
Keller
,
M.
Stumpf
, and
R.
Schinke
,
J. Chem. Phys.
102
,
3593
(
1995
);
J. D.
Tobiason
,
J. R.
Dunlop
, and
E. A.
Rohlfing
,
J. Chem. Phys.
103
,
1448
(
1995
).,
J. Chem. Phys.
34.
W.
Eastes
and
R. A.
Marcus
,
J. Chem. Phys.
61
,
502
(
1974
);
D. W.
Noid
and
R. A.
Marcus
,
J. Chem. Phys.
62
,
2119
(
1975
).,
J. Chem. Phys.
35.
S.
Chapman
,
B. C.
Garrett
, and
W. H.
Miller
,
J Chem. Phys.
64
,
502
(
1976
).
36.
R. L.
Warnock
and
R. D.
Ruth
,
Physica D.
26
,
1
(
1987
).
37.
C.
Jaffé
and
W. P.
Reinhardt
,
J. Chem. Phys.
71
,
1862
(
1979
).
38.
G. D. Birkhoff, Dynamical Systems (American Mathematics Society, New York, 1966).
39.
F. G.
Gustavson
,
Astron. J.
71
,
670
(
1966
).
40.
R. T.
Swimm
and
J. B.
Delos
,
J. Chem. Phys.
71
,
1706
(
1979
).
41.
A.
Einstein
,
Verh. Dtsch. Phys. Ges. (Berlin)
19
,
82
(
1917
);
L.
Brillouin
,
J. Phys. Radium.
7
,
353
(
1926
);
J. B.
Keller
,
Ann. Phys. (NY)
4
,
180
(
1958
).
42.
A. M. Ozorio de Almeida, Hamiltonian Systems (Cambridge University, Cambridge, 1988).
43.
H. Goldstein, Classical Mechanics (Addison-Wesley, Reading, MA, 1980).
44.
MATHEMATICA, Version 2.2, Wolfram Research, Inc., Champaign, Illinois 1988–93.
45.
M.
Hénon
and
C.
Heiles
,
Astron. J.
69
,
73
(
1964
).
46.
V. P. Maslov and M. V. Fedoriuk, Semi-Classical Approximation in Quantum Mechanics (Reidel Dordrecht, Holland, 1981).
47.
S. K.
Knudson
,
J. B.
Delos
, and
D. W.
Noid
,
J. Chem. Phys.
84
,
6886
(
1986
).
48.
M. V.
Berry
and
K. E.
Mount
,
Rep. Prog. Phys.
35
,
315
(
1972
).
49.
J. C.
Light
,
I. P.
Hamilton
, and
J. V.
Lill
,
J. Chem. Phys.
82
,
1400
(
1985
);
R. M.
Whitnell
, and
J. C.
Light
,
J. Chem. Phys.
90
,
1774
(
1989
).,
J. Chem. Phys.
50.
S.
Adachi
,
Ann. Phys. (NY)
195
,
45
(
1989
).
51.
M. J.
Davis
and
E. J.
Heller
,
J. Chem. Phys.
75
,
246
(
1981
).
52.
M. C. Gutzwiller, Chaos in Classical and Quantum Mechanics (Springer, New York, 1990).
53.
C.
Herring
,
Rev. Mod. Phys.
34
,
631
(
1962
).
54.
It may be overcome if we define a different class of trajectories which run on real plane in the C region. See Ref. 21 for this possibility.
This content is only available via PDF.
You do not currently have access to this content.