A formulation of the chemical potential (electronegativity) equalization principle is presented from the perspective of density‐functional theory. The resulting equations provide a linear‐response framework for describing the redistribution of electrons upon perturbation by an applied field. The method has two main advantages over existing electronegativity equalization and charge equilibration methods that allow extension to accurate molecular dynamics simulations. Firstly, the expansion of the energy is taken about the molecular ground state instead of the neutral atom ground states; hence, in the absence of an external field, the molecular charge distribution can be represented by static point charges and dipoles obtained from fitting to high‐level abinitio calculations without modification. Secondly, in the presence of applied fields or interactions with other molecules, the density response can be modeled accurately using basis functions. Inclusion of basis functions with dipolar or higher order multipolar character allows molecules or chemical groups to have correct local anisotropic polarizabilities. A modified semiempirical form of the hardness matrix has been introduced that can be evaluated efficiently using Gaussians, and requires only one parameter per basis function. Applications at two basis‐set levels demonstrate the method can accurately reproduce induced dipole moments and estimated chemical potentials obtained from density‐functional calculations for a variety of molecules. Inclusion of basis functions beyond the conventional spherical‐atom type is essential in some instances. The present formulation provides the foundation for a promising semi‐empirical model for polarization and charge transfer in molecular simulations.

1.
J. A. McCammon and S. Harvey, Dynamics of Proteins and Nucleic Acids (Cambridge University, Cambridge, 1987).
2.
J.
Applequist
,
J. R.
Carl
, and
K.-K.
Fung
,
J. Am. Chem. Soc.
94
,
2952
(
1972
);
J. A.
Stone
,
Mol. Phys.
56
,
1065
(
1985
).
3.
R. F. W. Bader, Atoms in Molecules: A Quantum Theory (Clarendon, Oxford, 1994).
4.
P.
Hohenberg
and
W.
Kohn
,
Phys. Rev. B
136
,
864
(
1964
).
5.
W.
Kohn
and
L.
Sham
.
Phys. Rev. A
140
,
1133
(
1965
).
6.
M. Levy and J. Perdew, in Density-Functional Methods in Physics, edited by R. H. Dreizler and J. da Providencia (Plenum, New York, 1985).
7.
R. G. Parr and W. Yang, Density-Functional Theory of Atoms and Molecules (Oxford University, New York, 1989).
8.
T.
Ziegler
,
Chem. Rev.
91
,
651
(
1991
).
9.
R. T.
Sanderson
,
Science
114
,
670
(
1951
);
R. T. Sanderson, Chemical Bonds and Bond Energy (Academic, New York, 1976).
10.
J.
Gasteiger
and
M.
Marsili
,
Tetrahedron
36
,
3219
(
1980
).
11.
J.
Hinze
and
H. H.
Jaffé
,
J. Am. Chem. Soc.
84
,
540
(
1962
).
12.
R. P.
Iczkowski
and
J. L.
Margrave
,
J. Am. Chem. Soc.
83
,
3547
(
1961
).
13.
R. G.
Parr
and
R. G.
Pearson
,
J. Am. Chem. Soc.
105
,
7512
(
1983
).
14.
R. G.
Pearson
,
Inorg. Chem.
27
,
734
(
1988
).
15.
R. G.
Parr
,
R. A.
Donnelly
,
M.
Levy
, and
W. E.
Palke
,
J. Chem. Phys.
68
,
3801
(
1978
).
16.
P.
Politzer
and
H.
Weinstein
,
J. Chem. Phys.
71
,
4218
(
1979
).
17.
R. F.
Nalewajski
,
J. Am. Chem. Soc.
106
,
944
(
1984
);
R. F.
Nalewajski
,
J. Phys. Chem.
89
,
2831
(
1985
).
18.
W. J.
Mortier
,
S. K.
Ghosh
, and
S.
Shankar
,
J. Am. Chem. Soc.
108
,
4315
(
1986
);
W. J.
Mortier
,
K. V.
Genechten
, and
J.
Gasteiger
,
J. Am. Chem. Soc.
107
,
829
(
1985
).,
J. Am. Chem. Soc.
19.
W. J.
Mortier
,
Struct. Bonding: Electronegativity
66
,
125
(
1987
).
20.
A. K.
Rappé
and
W. A.
Goddard
,
J. Phys. Chem.
95
,
3358
(
1991
).
21.
L. V.
Szentpály
,
J. Mol. Struct. (Theochem)
233
,
71
(
1991
).
22.
Z.-Z.
Yang
,
E.-Z.
Shen
, and
L.-H.
Wang
,
J. Mol. Struct. (Theochem)
312
,
167
(
1994
).
23.
K. T.
No
,
J. A.
Grant
, and
H. A.
Scheraga
,
J. Phys. Chem.
94
,
4732
(
1990
);
K. T.
No
,
J. A.
Grant
,
M. S.
Shik
, and
H. A.
Scheraga
,
J. Phys. Chem.
94
,
4740
(
1990
); ,
J. Phys. Chem.
J. M.
Park
,
K. T.
No
,
M. S.
Jhon
, and
H. A.
Scheraga
,
J. Comp. Chem.
14
,
1482
(
1993
).
24.
S. K.
Ghosh
and
R. G.
Parr
,
Theor. Chem. Acta
72
,
379
(
1987
);
T. K.
Ghanty
and
S. K.
Ghosh
,
J. Phys. Chem.
95
,
6512
(
1991
);
T. K.
Ghanty
and
S. K.
Ghosh
,
98
,
1840
(
1994
); ,
J. Phys. Chem.
T. K.
Ghanty
and
S. K.
Ghosh
,
J. Am. Chem. Soc.
116
,
3943
(
1994
).
25.
J.
Cioslowski
and
B. B.
Stefanov
,
J. Chem. Phys.
99
,
5151
(
1993
);
J.
Cioslowski
and
S. T.
Mixon
,
J. Am. Chem. Soc.
115
,
1084
(
1993
);
J.
Cioslowski
and
S. T.
Mixon
,
J. Chem. Phys.
101
,
366
(
1994
);
J.
Cioslowski
and
S. T.
Mixon
,
J. Chem. Phys.
102
,
7499
(
1995
).,
J. Chem. Phys.
26.
R. F.
Nalewajski
,
Int. J. Quant. Chem.
40
,
265
(
1991
);
J.
Korchowiec
and
R. F.
Nalewajski
,
Int. J. Quant. Chem.
44
,
1027
(
1992
); ,
Int. J. Quantum Chem.
B. G.
Baekelandt
,
W. J.
Mortier
,
J. L.
Lievens
, and
R. A.
Schoonheydt
,
J. Am. Chem. Soc.
113
,
6730
(
1991
);
B. G.
Baekelandt
,
W. J.
Mortier
, and
R. A.
Schoonheydt
,
Struct. Bonding
80
,
187
(
1993
);
V. B.
Kazansky
and
W. J.
Mortier
,
J. Mol. Catalysis
83
,
135
(
1993
).
27.
S. W.
Rick
,
S. J.
Stuart
, and
B. J.
Berne
,
J. Chem. Phys.
101
,
6141
(
1994
).
28.
T. L.
Gilbert
,
Phys. Rev. B
12
,
2111
(
1975
);
E. H.
Lieb
,
Int. J. Quant. Chem.
24
,
243
(
1982
).
29.
R.
Hoffman
,
J. Chem. Phys.
39
,
1397
(
1963
).
30.
R. S.
Mulliken
,
J. Chem. Phys.
23
,
1833
(
1955
).
31.
W.
Yang
and
R. G.
Parr
,
Proc. Natl. Acad. Sci. USA
82
,
6723
(
1985
).
32.
R. G.
Parr
and
W.
Yang
,
J. Am. Chem. Soc.
106
,
4049
(
1984
).
33.
G. D. Mahan and K. R. Subbaswamy, Local Density Theory of Polarizability (Plenum, New York, 1990).
34.
W.
Yang
,
J. Chem. Phys.
94
,
1208
(
1991
).
35.
S. H.
Vosko
,
L.
Wilk
, and
M.
Nusair
,
Can. J. Phys.
58
,
1200
(
1980
).
36.
B.
Delley
,
J. Chem. Phys.
92
,
508
(
1990
).
37.
See AIP document no. PAPS JCPSA6-104-159 for 2 pages of CPE parameters.
Order by PAPS number and journal reference from American Institute of Physics, Physics Auxiliary Publication Service, Carolyn Gehlbach, 500 Sunnyside Boulevard., Woodbury, New York 11797-2999. Fax: 516-576-2223, e-mail: janis@aip.org. The price is $1.50 for each microfiche (98 pages) or $5.00 for photocopies of up to 80 pages, and $0.15 for each additional page over 30 pages. Airmail additional. Make checks payable to the American Institute of Physics.
38.
T.-S.
Lee
,
D. M.
York
, and
W.
Yang
,
J. Chem. Phys.
102
,
7549
(
1995
).
39.
D. P.
Chong
,
Chin. J. Phys.
30
,
115
(
1992
);
D. P.
Chong
,
J. Chin. Chem. Soc.
39
,
375
(
1992
).
40.
P. G.
Jasien
and
G.
Fitzgerald
,
J. Chem. Phys.
93
,
2554
(
1990
);
J. G.
Guan
,
P.
Duffy
,
J. T.
Carter
,
D. P.
Chong
,
K. C.
Casida
,
M. E.
Casida
, and
M.
Wrinn
,
J. Chem. Phys.
98
,
4753
(
1993
); ,
J. Chem. Phys.
F.
Sim
,
D. R.
Salahub
, and
S.
Chin
,
Int. J. Quant. Chem.
43
,
463
(
1992
);
S. A. C.
McDowell
,
R. D.
Amos
, and
N. C.
Handy
,
Chem. Phys. Lett.
235
,
1
(
1994
).
41.
CRC Handbook of Chemistry and Physics, 74th Ed. (CRC, Boca Raton, 1993).
42.
A. J.
Perkins
J. Phys. Chem.
68
,
654
(
1964
).
43.
M. A.
Spackman
,
J. Phys. Chem.
93
,
7594
(
1989
).
44.
P. E.
Smith
and
B. M.
Pettitt
,
J. Phys. Chem.
98
,
9700
(
1994
).
45.
G. G.
Hall
and
C. M.
Smith
,
Int. J. Quant. Chem.
42
,
1237
(
1992
).
46.
C. J.
Marsden
,
B. J.
Smith
,
J. A.
Pople
,
H. F.
Schaefer
III
, and
L.
Radom
,
J. Chem. Phys.
95
,
1825
(
1991
).
47.
U.
Dinar
,
J. Phys. Chem.
97
,
7984
(
1993
).
48.
M.
Sprik
and
M. L.
Klein
,
J. Chem. Phys.
89
,
7556
(
1988
).
This content is only available via PDF.

Supplementary Material

You do not currently have access to this content.