The reaction of disilane, Si2H6, with the Si(100) and Si(111) surfaces has been examined with supersonic molecular beam scattering techniques. The emphasis has been on elucidating the reaction mechanism operative under conditions leading to steady‐state Si epitaxial growth. Two reaction mechanisms have been identified: (i) complete pyrolysis to form two adsorbed Si atoms and gas phase hydrogen; and (ii) a reaction forming one adsorbed Si atom, gas phase hydrogen, and silane, SiH4, as a gas phase product. The relative predominance of these two channels is sensitive to surface structure, adlayer composition, and incident kinetic energy. In particular, only complete pyrolysis is observed on the clean Si(100)‐(2×1) and Si(111)‐‘‘(1×1)’’ surfaces. The silane production channel, on the other hand, is observed on the Si(111)‐(7×7) surface, and on the Si(100)‐(2×1) surface in the presence of a finite coverage of either adsorbed hydrogen or phosphorus atoms. Examination of the reaction dynamics reveals that the probability of complete pyrolysis increases with increasing incident kinetic energy. Angular‐resolved measurements of the scattered SiH4(g) product on the Si(111)‐(7×7) surface suggest that silane is formed from the reaction of a chemisorbed intermediate. Comparison of the reaction probability of SiH4 and Si2H6 on the Si(111)‐(7×7) surface as a function of incident kinetic energy suggests a similar decomposition mechanism for these two molecules, namely, SiHbondactivation. In this scenario, SiH4(g) is formed via unimolecular thermal decomposition of an adsorbed Si2H5(a) species.

1.
J. M.
Jasinski
and
S. M.
Gates
,
Acc. Chem. Res.
24
,
9
(
1991
).
2.
H.
Hirayama
,
T.
Tatsumi
, and
N.
Aizaki
,
Appl. Phys. Lett.
52
,
2242
(
1988
).
3.
K.
Aketagawa
,
T.
Tatsumi
, and
J.
Sakai
,
Appl. Phys. Lett.
59
,
1735
(
1991
).
4.
A.
Yamada
,
M.
Tanda
,
F.
Kato
,
M.
Konagai
, and
K.
Takahashi
,
J. Appl. Phys.
69
,
1008
(
1991
).
5.
S. M.
Mokler
,
N.
Ohtani
,
M. H.
Xie
,
J.
Zhang
, and
B. A.
Joyce
,
Appl. Phys. Lett.
61
,
2548
(
1992
).
6.
T.
Yoshinobu
,
M.
Nakayama
,
H.
Shiomi
,
T.
Fuyuki
, and
H.
Matsunami
,
J. Cryst. Growth
99
,
520
(
1990
).
7.
R. J.
Buss
,
P.
Ho
,
W. G.
Breiland
, and
M. E.
Coltrin
,
J. Appl. Phys.
63
,
2808
(
1988
).
8.
D.
Lubben
,
R.
Tsu
,
T. R.
Bramblett
, and
J. E.
Greene
,
J. Vac. Sci. Technol. A
9
,
3003
(
1991
).
9.
S. M.
Mokler
,
W. K.
Liu
,
N.
Ohtani
, and
B. A.
Joyce
,
Appl. Surf. Sci.
60/61
,
92
(
1992
).
10.
S. M.
Gates
,
Surf. Sci.
195
,
307
(
1988
).
11.
R.
Imbihl
,
J. E.
Demuth
,
S. M.
Gates
, and
B. A.
Scott
,
Phys. Rev. B
39
,
5222
(
1989
).
12.
(a)
C. M.
Greenlief
,
S. M.
Gates
, and
P. A.
Holbert
,
J. Vac. Sci. Technol. A
7
,
1845
(
1989
);
(b)
C. M.
Greenlief
,
S. M.
Gates
, and
P. A.
Holbert
,
Chem. Phys. Lett.
159
,
202
(
1989
).
13.
S. M.
Gates
,
C. M.
Greenlief
,
D. B.
Beach
, and
P. A.
Holbert
,
J. Chem. Phys.
92
,
3144
(
1990
).
14.
S. M.
Gates
,
C. M.
Greenlief
, and
D. B.
Beach
,
J. Chem. Phys.
93
,
7493
(
1990
).
15.
S. M.
Gates
and
C. M.
Chiang
,
Chem. Phys. Lett.
184
,
448
(
1991
).
16.
F.
Bozso
and
Ph.
Avouris
,
Phys. Rev. B
38
,
3943
(
1988
).
17.
Ph.
Avouris
and
F.
Bozso
,
J. Phys. Chem.
94
,
2243
(
1990
).
18.
K. J.
Uram
and
U.
Jansson
,
Surf. Sci.
249
,
105
(
1991
).
19.
A. C.
Dillon
,
M. B.
Robinson
, and
S. M.
George
,
Surf. Sci.
295
,
L998
(
1993
).
20.
D.-S.
Lin
,
E. S.
Hirschorn
,
T.-C.
Chiang
,
R.
Tsu
,
D.
Lubben
, and
J. E.
Greene
,
Phys. Rev. B
45
,
3494
(
1992
).
21.
J. J.
Boland
,
Phys. Rev. B
67
,
1539
(
1991
).
22.
M. J.
Bronikowski
,
Y.
Wang
,
M. T.
McEllistrem
,
D.
Chen
, and
R. J.
Hamers
,
Surf. Sci.
298
,
50
(
1993
).
23.
Y.
Wang
,
M. J.
Bronikowski
, and
R. J.
Hamers
,
Surf. Sci.
311
,
64
(
1994
).
24.
C. C.
Cheng
and
J. T.
Yates
, Jr.
,
Phys. Rev. B
43
,
4041
(
1991
).
25.
Y. M.
Yu
and
R. M.
Nix
,
Surf. Sci.
306
,
59
(
1994
).
26.
J. R.
Engstrom
,
D. A.
Hansen
,
M. J.
Furjanic
, and
L.-Q.
Xia
,
J. Chem. Phys.
99
,
4051
(
1993
).
27.
J. R.
Engstrom
,
L.-Q.
Xia
,
M. J.
Furjanic
, and
D. A.
Hansen
,
Appl. Phys. Lett.
63
,
1821
(
1993
).
28.
For recent reviews see, e.g., (a)
A. W.
Kleyn
,
J. Phys. Condensed Matter
4
,
8375
(
1992
);
(b)
C. R.
Arumainayagam
and
R. J.
Madix
,
Progr. Surf. Sci.
38
,
1
(
1991
);
(c)
S. T.
Ceyer
,
Annu. Rev. Phys. Chem.
39
,
479
(
1988
);
( d)
J. A.
Barker
and
D. J.
Auerbach
,
Surf. Sci. Rep.
4
,
1
(
1985
);
( e)
M. J.
Cardillo
,
Annu. Rev. Phys. Chem.
32
,
331
(
1981
).
29.
D. A.
Hansen
,
M. J.
Furjanic
,
L.-Q.
Xia
, and
J. R.
Engstrom
,
Mater. Res. Soc. Symp. Proc.
282
,
549
(
1993
).
30.
L.-Q. Xia, M. E. Jones, N. Maity, and J. R. Engstrom (unpublished).
31.
W.
Kern
and
D.
Puotinen
,
RCA Rev.
31
,
187
(
1970
).
32.
D. A.
King
and
M. G.
Wells
,
Surf. Sci.
29
,
454
(
1972
).
33.
S. K.
Kulkarni
,
S. M.
Gates
,
B. A.
Scott
, and
H. H.
Sawin
,
Surf. Sci.
239
,
13
(
1990
).
34.
Reaction channels involving gas phase radical production, for example Si2H6(g)→Si+3/2H2(g)+SiH3(g), can be excluded in most cases employing thermochemical arguments. For example, this channel involving SiH3(g) formation is endothermic, where ΔHrxn = 27.2 Kcalmol1, or 1.18 eV Although sufficiently large incident kinetic energies can make this channel exoergic, this possibility seems rather unlikely, and the appearance of SiH3(g) would exhibit a clear threshold, behavior that is not suggested by our measurements (see Sec. III A).
35.
H.
Chatham
,
D.
Hils
,
R.
Robertson
, and
A.
Gallagher
,
J. Chem. Phys.
81
,
1770
(
1984
).
36.
V. T.
Amorebieta
and
A. J.
Colussi
,
Chem. Phys. Lett.
89
,
193
(
1982
).
37.
(a)
J. J.
Lander
,
Surf. Sci.
1
,
125
(
1964
);
( b)
W.
Telieps
and
E.
Bauer
,
Surf. Sci.
162
,
163
(
1985
); ,
Surf. Sci.
(c)
K.
Miki
,
Y.
Morita
,
H.
Tokumoto
,
T.
Sato
,
M.
Iwatsuki
,
M.
Suzuki
, and
T.
Fukuda
,
Ultramicroscopy
42–44
,
851
(
1992
).
38.
L.-Q.
Xia
and
J. R.
Engstrom
,
J. Chem. Phys.
101
,
5329
(
1994
).
39.
M. E.
Jones
,
L.-Q.
Xia
,
N.
Maity
, and
J. R.
Engstrom
,
Chem. Phys. Lett.
229
,
401
(
1994
).
40.
The parameter Δ = 1−〈nz2 where nz is the z component of the local surface normal (z being along the mean surface normal), and the brackets indicate an average over the unit cell. Thus Δ =  for a Si2H6(g)-surface potential exhibiting zero corrugation. See Ref 38 for more details.
41.
Y.-S.
Park
,
J.-Y.
Kim
, and
J.
Lee
,
J. Chem. Phys.
98
,
757
(
1993
).
42.
W.
Van Willigan
,
Phys. Lett. A
28
,
80
(
1968
).
43.
N. Maity, L.-Q. Xia, S. E. Roadman, and J. R. Engstrom (unpublished).
44.
D. A.
Shirley
,
Phys. Rev. B
5
,
4709
(
1972
).
45.
See, for example,
M. L.
Wise
,
B. G.
Koehler
,
P.
Gupta
,
P. A.
Coon
, and
S. M.
George
,
Surf. Sci.
258
,
166
(
1991
).
46.
( a)
M. L.
Yu
and
B. S.
Meyerson
,
J. Vac. Sci. Technol. A
2
,
446
(
1984
);
(b)
M. L.
Yu
,
D. J.
Vitkavage
, and
B. S.
Meyerson
,
J. Appl. Phys.
59
,
4032
(
1986
).
47.
( a)
Y.
Wang
,
M. J.
Bronikowski
, and
R. J.
Hamers
,
J. Phys. Chem.
98
,
5966
(
1994
);
( b)
Y.
Wang
,
X.
Chen
, and
R. J.
Hamers
,
Phys. Rev. B
50
,
4534
(
1994
).
48.
N.
Maity
,
L.-Q.
Xia
, and
J. R.
Engstrom
,
Appl. Phys. Lett.
66
,
1909
(
1995
).
49.
S. M.
Gates
,
C. M.
Greenlief
,
D. B.
Beach
, and
R. R.
Kunz
,
Chem. Phys. Lett.
154
,
505
(
1989
).
50.
A.
Goumri
,
W.-J.
Yuan
,
L.
Ding
, and
P.
Marshall
,
Chem. Phys. Lett.
204
,
296
(
1993
).
51.
One expects the dissociative heat of adsorption of SiH4 and Si2H6 to be similar, as both SiH4(g)→SiH3(a)+H(a), and Si2H6(g)→2SiH3(a), involve net formation of one additional Si–Si bond. Thus, the driving force for additional fragmentation upon chemisorption is not expected to be significantly different for the two reactants. As a consequence, this effect alone cannot be proposed to reconcile the SSIMS results concerning the relative fraction of SiH3+ formed by exposure to SiH4 vs Si2H6.
52.
See, e.g.,
W. H.
Weinberg
,
Surv. Prog. Chem.
10
,
1
(
1983
).
53.
Further decomposition of the bridging Si2H4(a) species to a Si2H2(a) species would be expected to form what Hamers and co-workers (Ref. 23) have identified employing STM as a “nonrotated hydrogenated dimer.” In this work, the authors excluded the possibility of Si2H5(a) formation, and proposed that this dimer structure, which is not the eventual equilibrium structure, was formed by reaction between two distinct SiH2(a) species.
54.
F. F.
Abraham
and
I. P.
Batra
,
Surf. Sci.
163
,
L752
(
1985
).
55.
(a)
S. Y.
Tong
,
H.
Huang
,
C. M.
Wei
,
W. E.
Packard
,
F. K.
Men
,
G.
Glander
, and
M. B.
Webb
,
J. Vac. Sci. Technol. A
6
,
615
(
1988
);
(b)
K.
Takayanagi
,
Y.
Tanishiro
,
M.
Takahashi
, and
S.
Takahashi
,
J. Vac. Sci. Technol. A
3
,
1502
(
1985
).,
J. Vac. Sci. Technol. A
56.
C.
Isobe
,
H.-C.
Cho
, and
J. E.
Crowell
,
Surf. Sci.
295
,
99
(
1993
).
57.
M.
Bowrey
and
J. H.
Purnell
,
Proc. R. Soc. London Ser. A
321
,
341
(
1971
).
58.
L. E.
Carter
,
S.
Khodobandeh
,
P. C.
Weakliem
, and
E. A.
Carter
,
J. Chem. Phys.
100
,
2277
(
1994
).
59.
J. A.
Jensen
,
C.
Yan
, and
A. C.
Kummel
,
Science
267
,
493
(
1995
).
This content is only available via PDF.
You do not currently have access to this content.