A computational theory for determining electron transfer rate constants is formulated based on an instanton expression for the quantum rate and the self‐consistent solution of the imaginary time nonadiabatic steepest descent approximation. The theory obtains the correct asymptotic behavior for the electron transfer rate constant in the nonadiabatic and adiabatic cases, and it smoothly bridges between those two limits for intermediate couplings. Furthermore, no assumptions regarding the form of the diabatic potentials are invoked (e.g., harmonic) and more than two diabatic states can be included in the calculations. The method thereby holds considerable promise for computing electron transfer rate constants in realistic condensed phase systems.

1.
R. A.
Marcus
and
N.
Sutin
,
Biochim. Biophys. Acta.
811
,
265
(
1985
).
2.
The literature on the subject of electron transfer is vast. Reference 1 is a representative review article.
3.
J. S.
Bader
,
R. A.
Kuharski
, and
D.
Chandler
,
J. Chem. Phys.
93
,
230
(
1990
).
4.
C. H.
Mak
and
D.
Chandler
,
Phys. Rev. A
41
,
5709
(
1990
).
5.
C. H.
Mak
and
D.
Chandler
,
Phys. Rev. A
44
,
2352
(
1991
).
6.
R.
Egger
and
C. H.
Mak
,
J. Chem. Phys.
99
,
2541
(
1993
).
7.
R.
Egger
,
C. H.
Mak
, and
U.
Weiss
,
J. Chem. Phys.
100
,
2651
(
1994
).
8.
D.
Makarov
and
N.
Makri
,
Phys. Rev. A
48
,
3626
(
1993
).
9.
D.
Makarov
and
N.
Makri
,
Chem. Phys. Lett.
221
,
482
(
1994
).
10.
G. A.
Voth
,
D.
Chandler
, and
W. H.
Miller
,
J. Chem. Phys.
91
,
7749
(
1989
).
11.
G. A.
Voth
,
Chem. Phys. Lett.
270
,
289
(
1990
).
12.
G. A.
Voth
,
J. Phys. Chem.
97
,
8365
(
1993
), for a review of path integral quantum transition state theory, see this paper.
13.
M. J.
Gillan
,
J. Phys. C
20
,
3621
(
1987
).
14.
J. N.
Gehlen
,
D.
Chandler
,
H. J.
Kim
, and
J. T.
Hynes
,
J. Phys. Chem.
96
,
1748
(
1992
).
15.
J. N.
Gehlen
and
D.
Chandler
,
J. Chem. Phys.
97
,
4958
(
1992
).
16.
X.
Song
and
A. A.
Stuchebrukhov
,
J. Chem. Phys.
99
,
969
(
1993
).
17.
L. S. Schulman, Techniques and Applications of Path Integration (Wiley, New York, 1986).
18.
J. S.
Langer
,
Ann. Phys.
41
,
108
(
1967
).
19.
W. H.
Miller
,
J. Chem. Phys.
62
,
1899
(
1975
).
20.
S. Coleman, in The Ways of Subnuclear Physics, edited by A. Zichichi (Plenum, New York, 1970), p. 805.
21.
I.
Affleck
,
Phys. Rev. Lett.
46
,
388
(
1981
).
22.
R. F.
Dashen
,
B.
Hasslacher
, and
A.
Neveu
,
Phys. Rev. D
10
,
4114
(
1974
).
23.
A. O.
Caldeira
and
A. J.
Leggett
,
Ann. Phys. NY
149
,
374
(
1983
).
24.
F. J.
Webster
,
P. J.
Rossky
, and
R. A.
Friesner
,
Comput. Phys. Commun.
63
,
494
(
1991
).
25.
J. C.
Tully
and
R. K.
Preston
,
J. Chem. Phys.
55
,
562
(
1972
).
26.
J. C.
Tully
,
J. Chem. Phys.
93
,
1061
(
1990
).
27.
D. F. Coker, in Computer Simulation in Chemical Physics, edited by M. P. Allen and D. J. Tildesley (Kluwer Academic, The Netherlands, 1993).
28.
P.
Pechukas
,
Phys. Rev.
181
,
166
(
1969
).
29.
P.
Pechukas
,
Phys. Rev.
181
,
174
(
1969
).
30.
R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals (McGraw-Hill, New York, 1965).
31.
R. P. Feynman, Statistical Mechanics (Addison-Wesley, Massachusetts, 1972), Chap. 3.
32.
L.
Chang
and
S.
Chakravarty
,
Phys. Rev. B
29
,
130
(
1984
).
33.
Y. I.
Dakhnovskii
,
A. A.
Ovchinnikov
, and
M. B.
Semenov
,
Mol. Phys.
63
,
497
(
1988
).
34.
H.
Grabert
,
U.
Weiss
, and
P.
Hanggi
,
Phys. Rev. Lett.
52
,
2193
(
1984
).
35.
V. A.
Benderskii
,
V. I.
Goldanskii
, and
D. E.
Makarov
,
Chem. Phys. Lett.
171
,
91
(
1990
).
36.
V. A.
Benderskii
,
V. I.
Goldanskii
, and
D. E.
Makarov
,
Chem. Phys.
154
,
407
(
1991
).
37.
V. A. Benderskii (unpublished).
38.
P. G.
Wolynes
,
J. Chem. Phys.
87
,
6559
(
1987
).
39.
D. Chandler, in Liquides, Cristallisation et Transition Vitreuse Les Houches, Session LI, edited by D. Levesque, J. Hansen, and J. Zinn-Justin (Elsevier, New York, 1991).
40.
P.
Hanggi
,
P.
Talkner
, and
M.
Borkovec
,
Rev. Mod. Phys.
62
,
250
(
1990
).
This content is only available via PDF.
You do not currently have access to this content.