A torsional potential energy surface for the cyclic water trimer was calculated at the level of second‐order Mo/ller–Plesset perturbation theory. For the construction of this ab initio surface, the first‐order wave function was expanded in a many‐electron basis which linearly depends on the interelectronic coordinates r12. The one‐electron basis of Gaussian orbitals was calibrated on the water monomer and dimer to ensure that the ab initio surface computed represents the (near‐ ) basis set limit for the level of theory applied. The positions of the free O—H bonds are described by three torsional angles. The respective three‐dimensional torsional space was investigated by 70 counterpoise corrected single‐point calculations for various values of these angles, providing a grid to fit an analytical representation of the potential energy surface. The four symmetry unique stationary points previously found at the Hartree–Fock and conventional Mo/ller–Plesset levels [Schütz et al., J. Chem. Phys. 99, 5228 (1993)] were studied in detail: Relative energies of the structures were calculated by applying second‐order Mo/ller–Plesset and coupled cluster methods; harmonic vibrational frequencies were calculated at the second‐order Mo/ller–Plesset level with a 6‐311++G(d,p) basis set at these stationary points. It is expected that the present torsional potential energy surface for the water trimer will play an important role in the understanding of the vibrational transitions observed by far‐infrared vibration–rotation–tunneling spectroscopy in terms of a nearly free pseudorotational interconversion on a cyclic vibrational–tunneling path.
Skip Nav Destination
Article navigation
15 July 1995
Research Article|
July 15 1995
An ab initio derived torsional potential energy surface for (H2O)3. II. Benchmark studies and interaction energies Available to Purchase
Wim Klopper;
Wim Klopper
Interdisziplinäres Projektzentrum für Supercomputing, Eidgenössische Technische Hochschule, CH‐8092 Zürich, Switzerland
Search for other works by this author on:
Martin Schütz;
Martin Schütz
Interdisziplinäres Projektzentrum für Supercomputing, Eidgenössische Technische Hochschule, CH‐8092 Zürich, Switzerland
Search for other works by this author on:
Hans P. Lüthi;
Hans P. Lüthi
Interdisziplinäres Projektzentrum für Supercomputing, Eidgenössische Technische Hochschule, CH‐8092 Zürich, Switzerland
Search for other works by this author on:
Samuel Leutwyler
Samuel Leutwyler
Institut für Anorganische, Analytische und Physikalische Chemie, Universität Bern, Freiestrasse 3, CH‐3000 Bern 9, Switzerland
Search for other works by this author on:
Wim Klopper
Interdisziplinäres Projektzentrum für Supercomputing, Eidgenössische Technische Hochschule, CH‐8092 Zürich, Switzerland
Martin Schütz
Interdisziplinäres Projektzentrum für Supercomputing, Eidgenössische Technische Hochschule, CH‐8092 Zürich, Switzerland
Hans P. Lüthi
Interdisziplinäres Projektzentrum für Supercomputing, Eidgenössische Technische Hochschule, CH‐8092 Zürich, Switzerland
Samuel Leutwyler
Institut für Anorganische, Analytische und Physikalische Chemie, Universität Bern, Freiestrasse 3, CH‐3000 Bern 9, Switzerland
J. Chem. Phys. 103, 1085–1098 (1995)
Article history
Received:
September 30 1994
Accepted:
April 11 1995
Citation
Wim Klopper, Martin Schütz, Hans P. Lüthi, Samuel Leutwyler; An ab initio derived torsional potential energy surface for (H2O)3. II. Benchmark studies and interaction energies. J. Chem. Phys. 15 July 1995; 103 (3): 1085–1098. https://doi.org/10.1063/1.470701
Download citation file:
Pay-Per-View Access
$40.00
Sign In
You could not be signed in. Please check your credentials and make sure you have an active account and try again.
Citing articles via
DeePMD-kit v2: A software package for deep potential models
Jinzhe Zeng, Duo Zhang, et al.
CREST—A program for the exploration of low-energy molecular chemical space
Philipp Pracht, Stefan Grimme, et al.
GPAW: An open Python package for electronic structure calculations
Jens Jørgen Mortensen, Ask Hjorth Larsen, et al.
Related Content
Low‐lying stationary points and torsional interconversions of cyclic (H2O)4: An ab initio study
J. Chem. Phys. (October 1995)