A torsional potential energy surface for the cyclic water trimer was calculated at the level of second‐order Mo/ller–Plesset perturbation theory. For the construction of this abinitio surface, the first‐order wave function was expanded in a many‐electron basis which linearly depends on the interelectronic coordinates r12. The one‐electron basis of Gaussian orbitals was calibrated on the water monomer and dimer to ensure that the abinitio surface computed represents the (near‐ ) basis set limit for the level of theory applied. The positions of the free O—H bonds are described by three torsional angles. The respective three‐dimensional torsional space was investigated by 70 counterpoise corrected single‐point calculations for various values of these angles, providing a grid to fit an analytical representation of the potential energy surface. The four symmetry unique stationary points previously found at the Hartree–Fock and conventional Mo/ller–Plesset levels [Schütz etal., J. Chem. Phys. 99, 5228 (1993)] were studied in detail: Relative energies of the structures were calculated by applying second‐order Mo/ller–Plesset and coupled cluster methods; harmonic vibrational frequencies were calculated at the second‐order Mo/ller–Plesset level with a 6‐311++G(d,p) basis set at these stationary points. It is expected that the present torsional potential energy surface for the water trimer will play an important role in the understanding of the vibrational transitions observed by far‐infrared vibration–rotation–tunneling spectroscopy in terms of a nearly free pseudorotational interconversion on a cyclic vibrational–tunneling path.

1.
T.
Bürgi
,
S.
Graf
,
S.
Leutwyler
, and
W.
Klopper
,
J. Chem. Phys.
103
,
1077
(
1995
).
2.
H.
Kistenmacher
,
G. C.
Lie
,
H.
Popkie
, and
E.
Clementi
,
J. Chem. Phys.
61
,
546
(
1974
).
3.
E.
Clementi
,
W.
Kołos
,
G. C.
Lie
, and
G.
Ranghino
,
Int. J. Quantum Chem.
17
,
377
(
1980
).
4.
P.
Habitz
,
P.
Bagus
,
P.
Siegbahn
, and
E.
Clementi
,
Int. J. Quantum Chem.
23
,
1803
(
1983
).
5.
G. C.
Lie
and
E.
Clementi
,
Phys. Rev. A
33
,
2679
(
1986
).
6.
K. S.
Kim
,
M.
Dupuis
,
G. C.
Lie
, and
E.
Clementi
,
Chem. Phys. Lett.
131
,
451
(
1986
).
7.
E.
Honegger
and
S.
Leutwyler
,
J. Chem. Phys.
88
,
2582
(
1988
).
8.
G.
Chal/asiński
,
M. M.
Szçześniak
,
P.
Cieplak
, and
S.
Scheiner
,
J. Chem. Phys.
94
,
2873
(
1991
).
9.
O.
,
M.
Yáñez
, and
J.
Elguero
,
J. Chem. Phys.
97
,
6628
(
1992
).
10.
S. S.
Xantheas
and
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
98
,
8037
(
1993
).
11.
J. G. C. M.
van Duijneveldt-van de Rijdt
and
F. B.
van Duijneveldt
,
Chem. Phys.
175
,
271
(
1993
).
12.
S. S.
Xantheas
and
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
99
,
8774
(
1993
).
13.
M.
Schütz
,
T.
Bürgi
,
S.
Leutwyler
, and
H. B.
Bürgi
,
J. Chem. Phys.
99
,
5228
(
1993
);
M.
Schütz
,
T.
Bürgi
,
S.
Leutwyler
, and
H. B.
Bürgi
,
100
,
1780
(E) (
1994
).,
J. Chem. Phys.
14.
J. E.
Fowler
and
H. F.
Schaefer
III
,
J. Am. Chem. Soc.
117
,
446
(
1995
).
15.
D. J.
Wales
,
J. Am. Chem. Soc.
115
,
11180
(
1993
).
16.
Y.
Tanimura
and
S.
Mukamel
,
J. Chem. Phys.
101
,
3062
(
1994
).
17.
W. L.
Jorgensen
,
J. Am. Chem. Soc.
103
,
335
(
1981
).
18.
W. L.
Jorgensen
,
J. Chem. Phys.
77
,
4156
(
1982
).
19.
W. L.
Jorgensen
,
J.
Chandrasekhar
,
J.
Madura
,
R.
Impey
, and
M. L.
Klein
,
J. Chem. Phys.
79
,
926
(
1983
).
20.
W. Klopper and M. Schütz, Chem. Phys. Lett. (in press).
21.
W.
Klopper
and
W.
Kutzelnigg
,
Chem. Phys. Lett.
134
,
17
(
1986
).
22.
W.
Kutzelnigg
and
W.
Klopper
,
J. Chem. Phys.
94
,
1985
(
1991
).
23.
W.
Klopper
,
Chem. Phys. Lett.
186
,
583
(
1991
).
24.
W.
Klopper
and
J.
Almlöf
,
J. Chem. Phys.
99
,
5167
(
1993
).
25.
SORE (second-order r12 energy), written by W. Klopper.
26.
M.
Häser
,
J.
Almlöf
, and
M.
Feyereisen
,
Theor. Chim. Acta
79
,
115
(
1991
).
27.
R.
Ahlrichs
,
M.
Bär
,
M.
Häser
,
H.
Horn
, and
C.
Kölmel
,
Chem. Phys. Lett.
162
,
165
(
1989
).
28.
W.
Klopper
and
R.
Röhse
,
Theor. Chim. Acta
83
,
441
(
1992
).
29.
HERMIT (one- and two-electron integral generator), written by T. U. Helgaker.
30.
DISCO, a direct SCF and MP2 program, written by J. Almlöf, K. Fægri, M. W. Feyereisen, T. H. Fischer, K. Korsell, and H. P. Lüthi.
31.
W. Klopper, H. P. Lüthi, and J. Hutter (unpublished).
32.
TITAN, a set of programs written by T. J. Lee, A. P. Rendell, and J. E. Rice.
33.
MOLCAS version 2, K. Andersson, M. P. Fülscher, R. Lindh, P.-A. Malmqvist, J. Olsen, B. O. Roos, A. J. Sadlej, and P.-O. Widmark, University of Lund (1992).
34.
GAUSSIAN92, Revision A, M. J. Frisch, G. W. Trucks, M. Head-Gordon, P. M. W. Gill, M. W. Wong, J. B. Foresman, B. G. Johnson, H. B. Schlegel, M. A. Robb, E. S. Replogle, R. Gomperts, J. L. Andres, K. Raghavachari, J. S. Binkley, C. Gonzales, C. L. Martin, D. J. Fox, D. J. Defrees, J. Baker, J. J. P. Stewart, and J. A. Pople (Gaussian, Inc., Pittsburgh, PA, 1992).
35.
S. F.
Boys
and
F.
Bernardi
,
Mol. Phys.
19
,
553
(
1970
).
36.
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
90
,
1007
(
1989
).
37.
R. A.
Kendall
,
T. H.
Dunning
, Jr.
, and
R. J.
Harrison
,
J. Chem. Phys.
96
,
6796
(
1992
).
38.
D. E.
Woon
and
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
98
,
1358
(
1993
).
39.
D. E. Woon, K. A. Peterson, and T. H. Dunning, Jr. (unpublished).
40.
G. A.
Petersson
and
M.
Braunstein
,
J. Chem. Phys.
83
,
5129
(
1985
).
41.
R.
Bukowski
,
B.
Jeziorski
,
S.
Rybak
, and
K.
Szalewicz
,
J. Chem. Phys.
102
,
888
(
1995
).
42.
K.
Szalewicz
,
B.
Jeziorski
,
H. J.
Monkhorst
, and
J. G.
Zabolitzky
,
J. Chem. Phys.
78
,
1420
(
1983
).
43.
R.
Bukowski
,
B.
Jeziorski
, and
K.
Szalewicz
,
J. Chem. Phys.
100
,
1366
(
1994
), and references therein.
44.
B. Jeziorski (private communication).
45.
T.
Kato
,
Commun. Pure Appl. Math.
10
,
151
(
1957
).
46.
M. J.
Bearpark
and
N. C.
Handy
,
Theor. Chim. Acta
84
,
115
(
1992
).
47.
W.
Klopper
,
H. P.
Lüthi
,
Th.
Brupbacher
, and
A.
Bauder
,
J. Chem. Phys.
101
,
9747
(
1994
).
48.
S. A.
Clough
,
Y.
Beers
,
G. P.
Klein
, and
L. S.
Rothman
,
J. Chem. Phys.
59
,
2254
(
1973
).
49.
J.
Verhoeven
and
A.
Dymanus
,
J. Chem. Phys.
52
,
3222
(
1970
).
50.
I. G.
John
,
G. B.
Backsay
, and
N. S.
Hush
,
Chem. Phys.
51
,
49
(
1980
).
51.
D. J.
Swanton
,
G. B.
Backsay
, and
N. S.
Hush
,
J. Chem. Phys.
84
,
5715
(
1986
).
52.
D.
Feller
,
C. M.
Boyle
, and
E. R.
Davidson
,
J. Chem. Phys.
86
,
3424
(
1987
).
53.
J. C.
Owicki
,
L. L.
Shipman
, and
H. A.
Scheraga
,
J. Phys. Chem.
79
,
1794
(
1975
).
54.
M. J.
Frisch
,
J. E.
Del Bene
,
J. S.
Binkley
, and
H. F.
Schaefer
III
,
J. Chem. Phys.
84
,
2279
(
1986
).
55.
D.
Feller
,
J. Chem. Phys.
96
,
6104
(
1992
).
56.
J. G. C. M.
van Duijneveldt-van de Rijdt
and
F. B.
van Duijneveldt
,
J. Chem. Phys.
97
,
5019
(
1992
).
57.
J. G. C. M. van Duijneveldt-van de Rijdt and F. B. van Duijneveldt (private communication).
58.
K.
Szalewicz
,
S. J.
Cole
,
W.
Kolos
, and
R. J.
Bartlett
,
J. Chem. Phys.
89
,
3662
(
1988
).
59.
S.
Rybak
,
B.
Jeziorski
, and
K.
Szalewicz
,
J. Chem. Phys.
95
,
6576
(
1991
).
60.
P.
Pulay
and
F.
Török
,
Acta Chim. Acad. Sci. Hung
47
,
273
(
1965
).
61.
G.
Keresztury
and
G.
Jalsovzky
,
J. Mol. Struct.
10
,
304
(
1971
).
62.
MOLVIB program, written by T. H. Fischer, with modifications by M. Schütz.
63.
S. S.
Xantheas
,
J. Chem. Phys.
100
,
7523
(
1994
).
64.
G. Chałasiński (private communication).
65.
G.
Chałasiński
and
M. M.
Szçześniak
,
Mol. Phys.
63
,
205
(
1988
).
66.
M. M.
Szçzeasacute;niak
and
G.
Chałasiński
,
J. Mol. Struct. (Theochem)
261
,
37
(
1992
).
67.
R. J.
Harrison
and
R. J.
Bartlett
,
Int. J. Quantum Chem. S
20
,
437
(
1986
).
68.
J. G. C. M.
van Duijneveldt-van de Rijdt
and
F. B.
van Duijneveldt
,
J. Comput. Chem.
13
,
399
(
1992
).
69.
M. Schütz, W. Klopper, H. P. Lüthi, and S. Leutwyler, J. Chem. Phys. (submitted).
70.
N.
Pugliano
and
R. J.
Saykally
,
Science
257
,
1937
(
1992
).
71.
R. J.
Saykally
and
G. A.
Blake
,
Science
259
,
1570
(
1993
).
72.
K.
Liu
,
J. G.
Loeser
,
M. J.
Elrod
,
B. C.
Host
,
J. A.
Rzepiela
,
N.
Pugliano
, and
R. J.
Saykally
,
J. Am. Chem. Soc.
116
,
3507
(
1994
).
73.
K.
Liu
,
M. J.
Elrod
,
J. G.
Loeser
,
J. D.
Cruzan
,
N.
Pugliano
,
M. G.
Brown
,
J.
Rzepiela
, and
R. J.
Saykally
,
Faraday Discuss. Chem. Soc.
97
,
35
(
1994
).
74.
S.
Suzuki
and
G. A.
Blake
,
Chem. Phys. Lett.
229
,
499
(
1994
).
This content is only available via PDF.
You do not currently have access to this content.