The 123.6 nm photoionization of deuterated isooctane at −10 °C in the presence of hexafluorobenzene has been studied by examining the effect of a magnetic field to alter the quantum yield of recombination fluorescence. This fluorescence results from geminate recombination of hexafluorobenzene anions with isooctane positive ions. The use of a deuterated as contrasted to a protonated alkane makes the intensity of the recombination fluorescence much more sensitive to the magnetic field and permits observation of two maxima in the fluorescence yield at field strengths of 0 and 411 G and a possible third maximum at 822 G. The theory of the hyperfine induced spin evolution predicts these resonances at selected multiples of the C6F6 hyperfine constant of 137 G. Utilizing the diffusion theory of geminate recombination in a Coulomb field, the experimental magnetic field spectrum is found to be well predicted over most of the range of magnetic field strengths studied (up to 2.5 kG) by a simple, one parameter, exponential radial probability density of initial scavenged geminate pair separation distances.

1.
B. S.
Yakovlev
and
L. V.
Lukin
,
Adv. Chem. Phys.
60
,
99
(
1985
).
2.
J.
Casanovas
,
J. P.
Guelfucci
, and
M.
Terrisol
,
Radiat. Phys. Chem.
32
,
361
(
1988
).
3.
A. E.
Ostafin
and
S.
Lipsky
,
J. Chem. Phys.
98
,
5408
(
1993
).
4.
G. R. Freeman, Kinetics of Nonhomogeneous Processes, edited by G. R. Freeman (Wiley, New York, 1987), Chap. 2.
5.
J. M. Warman, The Study of Fast Processes and Transient Species by Electron Pulse Radiolysis, edited by J. Baxendale and F. Busi (Reidel, Dordrecht, 1982), p. 433.
6.
R. A.
Holroyd
and
W. F.
Schmidt
,
Annu. Rev. Phys. Chem.
40
,
439
(
1989
).
7.
J. M.
Jung
,
J.
Klein
, and
R.
Voltz
,
J. Chem. Phys.
88
,
779
(
1991
).
8.
B.
Brocklehurst
,
Nature
221
,
921
(
1969
).
9.
B.
Brocklehurst
,
Int. Rev. Phys. Chem.
4
,
279
(
1985
).
10.
K.
Schulten
,
H.
Staerk
,
A.
Weller
,
H.-J.
Werner
, and
B.
Nickel
,
Z. Phys. Chem. N. F.
101
,
371
(
1976
).
11.
J.
Klein
and
R.
Voltz
,
Can. J. Chem.
55
,
2102
(
1977
).
12.
R. Z.
Sagdeev
,
K. M.
Salikhov
, and
Yu. M.
Molin
,
Russ. Chem. Rev.
46
,
297
(
1977
).
13.
K. M. Salikhov, Yu. N. Molin, R. Z. Sagdeev, and A. I. Buchachenko, Spin Polarization and Magnetic Effects in Radical Reactions (Elsevier, Amster dam, 1984).
14.
U. E.
Steiner
and
T.
Ulrich
,
Chem. Rev.
89
,
51
(
1989
).
15.
D. W.
Werst
,
M. G.
Bakker
, and
A. D.
Trifunac
,
J. Am. Chem. Soc.
112
,
40
(
1990
).
16.
O. A. Anisimov, Radical Ionic Systems, edited by A. Lund and M. Shiotani (Kluwer Academic, The Netherlands, 1991) p. 285.
17.
M.
Okazaki
,
Y.
Tai
,
K.
Nunome
,
K.
Toriyama
, and
S.
Nagakura
,
Chem. Phys.
161
,
177
(
1992
).
18.
B.
Brocklehurst
,
Z. Phys. Chem.
182
,
217
(
1993
).
19.
N. V.
Shokhirev
,
A. A.
Zharikov
, and
E. B.
Krissinel
,
J. Chem. Phys.
99
,
2643
(
1993
).
20.
O.
Anisimov
,
V. M.
Grigoryants
,
S. V.
Kiyanov
,
K. M.
Salikhov
,
S. A.
Sukhenko
, and
Yu. N.
Molin
,
Theor. Exp. Chem.
18
,
256
(
1983
).
21.
K. M.
Hong
and
J.
Noolandi
,
J. Chem. Phys.
68
,
5163
(
1978
).
22.
J. Noolandi, Kinetics of Nonhomogeneous Processes, edited by G. R. Freeman (Wiley, New York, 1987), p. 465.
23.
R. D. Levin and S. G. Lias, Natl. Stand. Ref. Data Sec. Natl. Bur. Stand. 71 (1982).
24.
S. G.
Lias
,
J. E.
Bartmess
,
J. F.
Liebman
,
J. L.
Holmes
,
R. D.
Levin
, and
W. G.
Mallard
,
J. Phys. Chem. Ref. Data
17
,
1
(
1988
).
25.
M.
Meot-Ner (Mautner)
,
L. W.
Sieck
, and
P.
Ausloos
,
J. Am. Chem. Soc.
103
,
5342
(
1981
);
A.
Ausloos
,
Radiat. Phys. Chem.
20
,
87
(
1982
);
S. G.
Lias
,
P.
Ausloos
, and
Z.
Harvath
,
Int. J. Chem. Kinet.
8
,
725
(
1976
);
R.
Mehnert
,
O.
Brede
, and
W.
Naumann
,
Radiat. Phys. Chem.
26
,
499
(
1985
);
R.
Mehnert
,
O.
Brede
, and
W.
Naumann
,
Ber. Bunsenges Phys. Chem.
89
,
1031
(
1985
).
26.
W.
Rothman
,
F.
Hirayama
, and
S.
Lipsky
,
J. Chem. Phys.
58
,
1300
(
1973
).
27.
Based on measured radiative rate constants of the order of 106−107s−1 for a variety of fluorescent saturated hydrocarbons (Ref. 28) a fluorescence quantum yield of less than 5×10−6 would imply a lifetime of excited isooctane of less than 5 ps. Also, picosecond transient absorption spectroscopy with excitation above the ionization threshold have indicated no evidence for a state of iso-octane of lifetime longer than 10 ps [
H.
Miyasaka
,
N.
Mataga
,
Chem. Phys. Lett.
126
,
219
(
1986
)].
These results appear to be at variance with a lifetime of 38±12ps that has been recently reported in transient absorption measurements on iso-octane excited above its ionization threshold [
M. U.
Sander
,
U.
Brummund
,
K.
Luther
, and
J.
Troe
,
J. Phys. Chem.
97
,
8378
(
1993
)]
The origin of this discrepancy is unknown, but recent measurements that we have made of the emission of benzene from solutions of isooctane excited in the iso-octane absorption system from 150 to 160 nm, provide a sensitization yield of only 0.02 at 1.0 M benzene, implying an iso-octane lifetime of less than 6 ps. [
V. O.
Saik
and
S.
Lipsky
,
J. Phys. Chem.
99
,
10471
(
1995
)]. Accordingly, at 0.1 M hexafluorobenzene, we expect negligible (<0.2%) sensitization of hexafluorobenzene by excited iso-octane.
28.
R. Lyke Ph.D. thesis, University of Minnesota, 1984;
R.
Hermann
and
R.
Mehnert
,
J. Lumin.
33
,
69
(
1985
);
Y.
Katsumura
,
Y.
Yoshida
,
S.
Tagawa
, and
S.
Tabata
,
Radiat. Phys. Chem.
21
,
103
(
1983
).
29.
These considerations have been previously invoked to simplify the analysis of the concentration dependence of the fluorescence of hexafluorobenzene in similar solvents excited with beta particles (Ref. 30).
30.
D. W.
Tweeten
,
K.
Lee
, and
S.
Lipsky
,
Radiat. Phys. Chem.
34
,
771
(
1989
).
31.
D. V.
Stass
,
B. M.
Tadjikov
, and
Yu. N.
Molin
,
Chem. Phys. Lett.
235
,
511
(
1995
). This paper came to our attention immediately after our manuscript was submitted for publication.
32.
B.
Brocklehurst
,
J. Chem. Soc. Faraday Trans. II
72
,
1869
(
1976
).
33.
H. T.
Choi
,
J. A.
Haglund
, and
S.
Lipsky
,
J. Phys. Chem.
87
,
1583
(
1983
).
34.
L. F.
Williams
,
M. B.
Yim
, and
D. E.
Wood
,
J. Am. Chem. Soc.
95
,
6475
(
1973
).
35.
M. B.
Yim
and
D. E.
Wood
,
J. Am. Chem. Soc.
98
,
2053
(
1975
).
36.
O. A.
Anisimov
and
Yu. N.
Molin
,
Khim. Vysok. Energ.
14
,
307
(
1980
).
37.
S. A.
Sukhenko
,
P. A.
Purtov
, and
K. M.
Salikhov
,
Sov. J. Chem. Phys.
2
,
29
(
1985
).
38.
H. T.
Choi
,
D. S.
Sethi
, and
C. L.
Braun
,
J. Chem. Phys.
77
,
6027
(
1982
).
39.
J. M.
Jung
,
J.
Klein
, and
R.
Voltz
,
J. Chim. Phys.
88
,
779
(
1991
).
40.
The tracer diffusion constant of C6F6 in cyclohexane at 25 °C is 1.65×10−5cm2/s (Ref. 41). This was scaled to 1.91×10−5cm2/s in iso-octane using the ratio of the viscosity of cyclohexane at 25 °C of 0.898 cp to that of iso-octane at −10°C of 0.777 cp (extrapolated from higher temperature measurements via the equation ln η = A+B/T+C ln T+DTE) (Ref. 42). The self-diffusion constant of iso-octane, Di, at −10°C was obtained via the semiempirical equation of Dullien [i.e., ηVmDi/RT = (0.124×10−16)Vc2/3, where η is the viscosity, Vm the molar volume, Vc the critical volume, and all units are cgs] (Ref. 43) which predicts the self-diffusion constants of 32 liquids with an average deviation of ∼4%. Using η = 0.777 cp at −10°C (Ref. 42), Vm = 159 cm3 (interpolated for −10°C) (Ref. 42) and Vc = 468 cm3, gives Di = 1.27×10−5cm2/s. Adding this to the tracer diffusion constant of C6F6 provides us with the value D = 3.18×10−5cm2/s in normal iso-octane. No isotope correction was attempted. The Onsager radius of 321 Å at −10°C in iso-octane was obtained using a NaD optical dielectric constant of ε = 1.98.
41.
H.
Weingartner
and
B. M.
Braun
,
Ber. Bunsenges. Phys. Chem.
89
,
906
(
1985
).
42.
T. E. Daubert and R. R. Danner, Physical and Thermodynamic Properties of Pure Compounds (U.S. GPO, Washington, D.C., 1989), Vol. 3.
43.
F. A. L.
Dullien
,
AIChE J.
18
,
62
(
1972
).
44.
The apparatus for determining the photocurrent is the same as has been described in
V. O.
Saik
and
S.
Lipsky
,
J. Phys. Chem.
98
,
11
858
(
1994
).
45.
K.
Lee
and
S.
Lipsky
,
J. Phys. Chem.
86
,
1985
(
1982
).
46.
K.
Lee
and
S.
Lipsky
,
J. Phys. Chem.
88
,
4251
(
1984
).
47.
These values of γrc are obtained using the reported value of γ at 20°C (Ref 46) and the value rc = 321 Å for iso-octane at −10°C (Ref 40). The assumption we made is that γ is not strongly dependent on temperature. Using the 20°C value for rc of 288 nm, gives values of γrc, 11% higher.
48.
Bottcher and Schmidt (Ref. 49) have suggested that the average range of electrons photoejected from saturated hydrocarbon liquids at energies ∼1.5−2eV above threshold and those similarly ejected from TMPD in the same solvents should not significantly differ. The approximate agreement in the values of γ1rc of 17.5 for photoejection from neat isooctane containing 0.086 MC6F6 and of 16.5 from TMPD in iso-octane containing 0.086 MC7F16 tends to further support this view. Additionally, it would suggest that the value of γ1rc = 11.9 for TMPD in iso-octane without scavenger (Ref. 46) should be close to that of neat iso-octane and, therefore, that the value of γlrc = 6.9 obtained by Casanovas et al., (Ref. 2) may be too low.
49.
E.
Bottcher
and
W. F.
Schmidt
,
J. Chem. Phys.
80
,
1353
(
1984
).
50.
V. O.
Saik
,
N. N.
Lukzen
,
V. M.
Grigoryants
,
O. A.
Anisimov
,
A. B.
Doctorov
, and
Yu. N.
Molin
,
Chem. Phys.
84
,
421
(
1984
).
51.
D. V.
Stass
,
N. N.
Lukzen
,
B. M.
Tadjikov
, and
Yu. N.
Molin
,
Chem. Phys. Lett.
233
,
444
(
1995
).
52.
C. A. M.
Van Den Ende
,
Lajos
Nykios
,
J. M.
Warman
, and
A.
Hunmel
,
Radiat. Phys. Chem.
19
,
297
(
1982
).
53.
T. G.
Ryan
and
G. R.
Freeman
,
J. Chem. Phys.
68
,
5144
(
1978
).
54.
Y.
Beauchamp
and
G.
Durocher
,
Spectrochim. Acta
32A
,
269
(
1976
).
55.
D. W.
Werst
and
A. D.
Trifunac
,
J. Phys. Chem.
95
,
3466
(
1991
).
56.
E. U. Condon and G. H. Shortley, Theory of Atomic Spectra (Cambridge University, Cambridge, 1951), Chap. 3.
This content is only available via PDF.
You do not currently have access to this content.