Ring polymers are represented on a computer with the bead–stick model. If an infinitely thin spike is inserted at some (minimum) distance r from the center of mass of a Gaussian ring of contour length N, the probability P(r,N,w) of the ring winding a nonzero number of times w about the spike is nearly given by A exp[−(r/Rg)2/2σ2], where A and σ depend on N and w, and Rg is the radius of gyration of the polymer. We also find that the asymptotic results of related theoretical calculations cannot be realized in systems of practical size.

1.
L. H. Kauffman, Knots and Physics (World Scientific, New Jersey, 1991).
2.
J. S.
Birman
,
Bull. Am. Math. Soc.
28
,
253
(
1993
).
3.
K.
Koniaris
and
M.
Muthukumar
,
Phys. Rev. Lett.
66
,
2211
(
1991
).
4.
V. F. R.
Jones
,
Bull. Am. Math. Soc.
12
,
103
(
1985
).
5.
P. G. De Gennes, Scaling Concepts in Polymer Physics (Cornell University, Ithaca, 1979).
6.
F. W. Wiegel, Introduction to Path-Integral Methods in Physics and Polymer Science (World Scientific, Philadelphia, 1986).
7.
J. D. Ferry, Viscoelastic Properties of Polymers (Wiley, New York, 1980).
8.
S. F.
Edwards
,
Proc. Phys. Soc.
91
,
513
(
1967
).
9.
S.
Prager
and
H. L.
Frisch
,
J. Chem. Phys.
46
,
1475
(
1967
).
10.
S. F.
Edwards
,
J. Phys. A
2
,
15
(
1968
).
11.
N.
Saito
and
Y. D.
Chen
,
J. Chem. Phys.
59
,
3701
(
1973
).
12.
R.
Alexander-Katz
and
S. F.
Edwards
,
J. Phys. A
5
,
674
(
1972
).
13.
S. F.
Edwards
,
Proc. R. Soc. London, Ser. A
385
,
267
(
1982
).
14.
A. Baumgärtner, in Monte Carlo Methods in Statistical Physics, edited by K. Binder (Springer, Berlin, 1984).
15.
K.
Koniaris
,
J. Chem. Phys.
101
,
731
(
1994
).
16.
Y. D.
Chen
,
J. Chem. Phys.
75
,
5160
(
1981
).
This content is only available via PDF.
You do not currently have access to this content.