Calculation of the structure and vibrational spectrum of the fluoroformyloxyl radical, FC(O)O, using abinitio methods is complicated by orbital symmetry breaking in the Hartree–Fock wave function. While symmetry breaking is most directly corrected with multiconfiguration Hartree–Fock methods, the problem can also be attacked with single reference methods when combined with an electron correlation treatment that adequately mixes the Hartree–Fock determinants leading to the symmetry breaking. In this work the structure and vibrational spectrum of both the ground (X2B2) and second excited (B2A1) states of the FC(O)O radical are calculated using single‐reference wave functions constructed in two different ways—unrestricted (UHF) and quasirestricted (QRHF) Hartree–Fock wave functions—in combination with a coupled cluster [CCSD and CCSD(T)] electron correlation treatment. We find that both methods must be employed with some caution, but in combination they provide reliable prediction of the vibrational spectrum of the FC(O)O radical.

1.
J. S.
Francisco
,
A. N.
Goldstein
,
Z.
Li
,
Y.
Zhao
, and
I. H.
Williams
,
J. Phys. Chem.
94
,
4791
(
1990
).
2.
M. M.
Maricq
,
J. J.
Szente
,
T. S.
Dibble
, and
J. S.
Francisco
,
J. Phys. Chem.
98
,
12294
(
1994
).
3.
T. J.
Wallington
,
T.
Ellermann
,
O. J.
Nielsen
, and
J.
Sehested
,
J. Phys. Chem.
98
,
2346
(
1994
).
4.
M. M.
Maricq
,
J. J.
Szente
,
Z.
Li
, and
J. S.
Francisco
,
J. Chem. Phys.
98
,
784
(
1993
).
5.
J. S.
Francisco
and
A.
Ostafin
,
Mol. Phys.
68
,
255
(
1989
).
6.
S. D.
Peyerimhoff
,
P. S.
Skell
,
D. D.
May
, and
R. J.
Buenker
,
J. Am. Chem. Soc.
104
,
4515
(
1982
).
7.
D.
Feller
,
E.
Huyser
,
W. T.
Borden
, and
E. R.
Davidson
,
J. Am. Chem. Soc.
105
,
1459
(
1983
).
8.
A. D.
McLean
,
B. H.
Lengsfield
III
,
J.
Pacansky
, and
Y.
Ellinger
,
J. Chem. Phys.
83
,
3567
(
1985
).
9.
J. F.
Stanton
and
J.
Gauss
,
J. Chem. Phys.
101
,
8938
(
1994
).
10.
D. W.
Arnold
,
S. E.
Bradforth
,
E. H.
Kim
, and
D. M.
Neumark
,
J. Chem. Phys.
102
,
3493
(
1995
).
11.
J. F.
Stanton
,
J.
Gauss
, and
R. J.
Bartlett
,
J. Chem. Phys.
97
,
5554
(
1992
).
12.
C. F.
Jackels
and
E. R.
Davidson
,
J. Chem. Phys.
65
,
2941
(
1976
).
13.
R. J.
Bartlett
,
J. Phys. Chem.
93
,
1697
(
1989
).
14.
R. J. Bartlett and J. F. Stanton, in Reviews in Computational Chemistry, edited by K. B. Lipkowitz and D. B. Boyd (VCH, New York, 1994), Vol. V, p. 65.
15.
M.
Rittby
and
R. J.
Bartlett
,
J. Phys. Chem.
92
,
3033
(
1988
).
16.
G. A. Argüello, H. Grothe, M. Kronberg, H. Willner, and H.-G. Mack, J. Chem. Phys. (to be published).
17.
ACES II, an ab initio program system, authored by J. F. Stanton, J. Gauss, J. D. Watts, W. J. Lauderdale, and R. J. Bartlett, Quantum Theory Project, University of Florida.
18.
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
53
,
2823
(
1970
).
19.
L. T.
Redmon
,
G. D.
Purvis
III
, and
R. J.
Bartlett
,
J. Am. Chem. Soc.
101
,
2856
(
1979
).
20.
J.
Gauss
,
W. J.
Lauderdale
,
J. F.
Stanton
,
J. D.
Watts
, and
R. J.
Bartlett
,
Chem. Phys. Lett.
182
,
207
(
1991
).
21.
E. A.
Salter
,
H.
Sekino
, and
R. J.
Bartlett
,
J. Chem. Phys.
87
,
502
(
1987
).
22.
J.
Gauss
,
J. F.
Stanton
, and
R. J.
Bartlett
,
J. Chem. Phys.
95
,
2523
(
1991
).
23.
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
90
,
1007
(
1989
).
24.
R. G. Pearson, Symmetry Rules for Chemical Reactions (Wiley, New York, 1976).
25.
E. R.
Davidson
and
W. T.
Borden
,
J. Phys. Chem.
87
,
4783
(
1983
).
26.
T. S.
Dibble
and
J. S.
Francisco
,
J. Phys. Chem.
98
,
11694
(
1994
).
27.
L. A.
Curtiss
,
K.
Raghavachari
,
G. W.
Trucks
, and
J. A.
Pople
,
J. Chem. Phys.
94
,
7221
(
1991
).
28.
J. A.
Pople
,
M.
Head-Gordon
, and
K.
Raghavachari
,
J. Chem. Phys.
87
,
5968
(
1987
).
This content is only available via PDF.
You do not currently have access to this content.