The global and local minima, stationary points, and torsional rearrangement processes of cyclic homodromic (H2O)4 were studied on its four‐dimensional torsional intermolecular potential energy surface. Eight different energetically low‐lying torsional stationary point structures were found by abinitio theory, and fully structure‐optimized at the second‐order Mo/ller–Plesset level, using large basis sets. Second‐order energies close to the one‐particle basis set limit were obtained at these geometries using the explicitly correlated Mo/ller–Plesset method. The effects of higher‐order correlation energy terms were investigated by coupled cluster theory, and terms beyond second order were found to cancel in good approximation. The S4 symmetric global minimum has a square and almost planar O...O...O...O arrangement with free O–H bonds alternating ‘‘up’’ and ‘‘down’’ relative to this plane, with two isometric versions of this structure. Another torsional conformer with two neighboring up O–H bonds followed by two neighboring down O–H bonds is a local minimum, 0.93 kcal/mol above the global minimum. The four versions of this structure are connected to the global minima via two distinct but almost degenerate first‐order torsional saddle points, which occur as two sets of eight isometric versions each, both about 1.24 kcal/mol above the global minimum. Yet another set of eight second‐order saddle points lies at 1.38 kcal/mol. The structure with three O–H bonds up and one down is not a stationary point, while the structure with all four O–H bonds on the same side of the plane is a first‐order saddle point.

The fully planar C4h symmetric structure is a fourth‐order stationary point 2.8 kcal/mol above the minimum. The torsional interconversion paths between this multitude of points are complex, and are discussed in three‐dimensional spaces of symmetry‐adapted torsional coordinates, and also in a network representation. The torsional normal‐mode eigenvectors point fairly directly along the torsional interconversion pathways, but the harmonic frequencies are well below the corresponding barriers. Tunneling interconversion between torsional conformers is, hence, less important than for the water trimer.

1.
M. J.
Frisch
,
J. E.
Del Bene
,
J. S.
Binkley
, and
H. F.
Schaefer
III
,
J. Chem. Phys.
84
,
2279
(
1986
).
2.
R. J.
Harrison
and
R. J.
Bartlett
,
Int. J. Quantum. Chem. S
20
,
437
(
1986
).
3.
K.
Szalewicz
,
S. J.
Cole
,
W.
Kołos
, and
R. J.
Bartlett
,
J. Chem. Phys.
89
,
3662
(
1988
).
4.
S.
Rybak
,
B.
Jeziorski
, and
K.
Szalewicz
,
J. Chem. Phys.
95
,
6576
(
1991
).
5.
D.
Feller
,
J. Chem. Phys.
96
,
6104
(
1992
).
6.
J. G. C. M.
van Duijneveldt-van de Rijdt
and
F. B.
van Duijneveldt
,
J. Chem. Phys.
97
,
5019
(
1992
).
7.
J. G. C. M.
van Duijneveldt-van de Rijdt
and
F. B.
van Duineveldt
,
J. Comput. Chem.
13
,
399
(
1992
).
8.
G.
Chałasiński
,
M. M.
Szczȩśniak
,
P.
Cieplak
, and
S.
Scheiner
,
J. Chem. Phys.
94
,
2873
(
1991
).
9.
O.
,
M.
Yáñez
, and
J.
Elguero
,
J. Chem. Phys.
97
,
6628
(
1992
).
10.
J. G. C. M.
van Duijneveldt-van de Rijdt
and
F. B.
van Duijneveldt
,
Chem. Phys.
175
,
271
(
1993
).
11.
M.
Schütz
,
T.
Bürgi
,
S.
Leutwyler
, and
H. B.
Bürgi
,
J. Chem. Phys.
99
,
5228
(
1993
);
M.
Schütz
,
T.
Bürgi
,
S.
Leutwyler
, and
H. B.
Bürgi
,
100
,
1780
(E) (
1994
).,
J. Chem. Phys.
12.
S. S.
Xantheas
and
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
98
,
8037
(
1993
).
13.
S. S.
Xantheas
and
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
99
,
8774
(
1993
).
14.
S. S.
Xantheas
,
J. Chem. Phys.
100
,
7523
(
1994
).
15.
J. E.
Fowler
and
H. F.
Schaefer
III
,
J. Am. Chem. Soc.
117
,
446
(
1995
).
16.
W.
Klopper
,
M.
Schütz
,
H. P.
Lüthi
, and
S.
Leutwyler
,
J. Chem. Phys.
103
,
1085
(
1995
).
17.
C. J.
Tsai
and
K. D.
Jordan
,
J. Chem. Phys.
95
,
3850
(
1991
).
18.
C. J.
Tsai
and
K. D.
Jordan
,
Chem. Phys. Lett.
213
,
181
(
1993
).
19.
C. J.
Tsai
and
K. D.
Jordan
,
J. Phys. Chem.
97
,
5208
(
1993
).
20.
N.
Pugliano
,
J. D.
Cruzan
,
J. G.
Loeser
, and
R. J.
Saykally
,
J. Chem. Phys.
98
,
6600
(
1993
).
21.
R. J.
Saykally
and
G. A.
Blake
,
Science
257
,
1937
(
1992
).
22.
K.
Liu
,
J. G.
Loeser
,
M. J.
Elrod
,
B. C.
Host
,
J. A.
Rzepiela
,
N.
Pugliano
, and
R. J.
Saykally
,
J. Am. Chem. Soc.
116
,
3507
(
1994
).
23.
K.
Liu
,
M. J.
Elrod
,
J. G.
Loeser
,
J. D.
Cruzan
,
N.
Pugliano
,
M. G.
Brown
,
J. A.
Rzepiela
, and
R. J.
Saykally
,
Faraday Discuss. Chem. Soc.
97
,
35
(
1994
).
24.
S.
Suzuki
and
G. A.
Blake
,
Chem. Phys. Lett.
229
,
499
(
1994
).
25.
W.
Klopper
and
M.
Schütz
,
Chem. Phys. Lett.
237
,
536
(
1995
).
26.
D. J.
Wales
,
J. Am. Chem. Soc.
115
,
11
180
(
1993
).
27.
J. E. H.
Koehler
,
W.
Saenger
, and
B.
Lesyng
,
J. Comput. Chem.
8
,
1090
(
1987
).
28.
K. S.
Kim
,
M.
Dupuis
,
G. C.
Lie
, and
E.
Clementi
,
Chem. Phys. Lett.
131
,
451
(
1986
).
29.
E.
Honegger
and
S.
Leutwyler
,
J. Chem. Phys.
88
,
2582
(
1988
).
30.
W.
Klopper
and
W.
Kutzelnigg
,
Chem. Phys. Lett.
134
,
17
(
1986
).
31.
W.
Kutzelnigg
and
W.
Klopper
,
J. Chem. Phys.
94
,
1985
(
1991
).
32.
W.
Klopper
.
Chem. Phys. Lett.
186
,
583
(
1991
).
33.
W.
Klopper
,
J. Chem. Phys.
102
,
6168
(
1995
).
34.
H. C.
Longuet-Higgins
,
Mol. Phys.
6
,
445
(
1963
).
35.
P. R. Bunker, Molecular Symmetry and Spectroscopy (Academic, New York, 1979).
36.
R. G. A.
Bone
,
T. W.
Rowlands
,
N. C.
Handy
, and
A. J.
Stone
,
Mol. Phys.
72
,
33
(
1991
).
37.
P.
Murray-Rust
,
H. B.
Bürgi
, and
J. D.
Dunitz
.
Acta Cryst. A
35
,
703
(
1979
).
38.
S. F.
Boys
and
F.
Bernardi
,
Mol. Phys.
19
,
553
(
1970
).
39.
F. B.
van Duijneveldt
,
J. G. C. M.
van Duijneveldt-van de Rijdt
, and
J. H.
van Lenthe
,
Chem. Rev.
94
,
1873
(
1994
).
40.
DISCO, a direct SCF and MP2 program, written by J. Almlöf, K. Faegri, M. W. Feyereisen, T. H. Fischer, K. Korsell, and H. P. Lüthi.
41.
T. H.
Fischer
and
J.
Almlöf
,
J. Phys. Chem.
96
,
9768
(
1992
).
42.
GAUSSIAN 92, Revision A, M. J. Frisch et al., Gaussian, Inc., Pittsburgh, PA (1992).
43.
P.
Pulay
and
F.
Török
,
Acta Chim. Acad. Sci. Hung.
47
,
273
(
1965
).
44.
G.
Keresztury
and
G.
Jalsovzky
,
J. Mol. Struct.
10
,
304
(
1971
).
45.
MOLVIB program, written by T. H. Fischer, with modifications by M. Schütz.
46.
TITAN, a coupled cluster program, written by T. J. Lee, A. P. Rendell, and J. E. Rice (1991).
47.
MOLECULE-SWEDEN, an electronic structure program, written by J. Almlöf, C. W. Bauschlicher, M. R. A. Blomberg, D. P. Chong, A. Heiberg, S. R. Langhoff, P.-Å. Malmqvist, A. P. Rendell, B. O. Roos, P. E. M. Siegbahn, and P. R. Taylor.
48.
SORE (second-order r12 energy), written by W. Klopper.
49.
M.
Häser
,
J.
Almlöf
, and
M. W.
Feyereisen
,
Theor. Chim. Acta
79
,
115
(
1991
).
50.
R.
Ahlrichs
,
M.
Bär
,
M.
Häser
,
H.
Horn
, and
C.
Kölmel
,
Chem. Phys. Lett.
162
,
165
(
1989
).
51.
W.
Klopper
and
R.
Röhse
,
Theor. Chim. Acta
83
,
441
(
1992
).
52.
HERMIT (one-and two-electron integral generator), written by T. U. Helgaker.
53.
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
90
,
1007
(
1989
).
54.
R. A.
Kendall
,
T. H.
Dunning
, Jr.
, and
R. J.
Harrison
,
J. Chem. Phys.
96
,
6796
(
1992
).
55.
P. G. Mezey, Potential Energy Hypersurfaces (Elsevier, Amsterdam, 1987).
56.
M. Schütz and W. Klopper (unpublished).
This content is only available via PDF.
You do not currently have access to this content.