We apply the potential distribution theorems for the cavity distribution functions to the development of thermodynamic formulas for fused‐sphere chain molecules. Alternative forms of the potential distribution theorems are derived: in terms of the cavity functions, and in terms of the singlet direct correlation functions. We point out the connections to integral equation theories. To determine the behavior of fused dispheres, we examine the successful Wertheim thermodynamic perturbation theory (TPT) at different bond lengths l in light of the cavity functions. For ternary mixtures of spheres S and B, and fused dispheres (SB), we discover a confluencepoint where all cavity functions at different mixture compositions converge. This takes place at the tangent disphere limit l=d (l being the bond length, and d, the hard sphere diameter). This point is also in common with the excess Helmholtz free energy from the TPT theory for tangent dumbbells. The cavity functions are obtained from the accurate equation of state of Boublík. To verify the chemical potentials calculated, we compare with new Monte Carlo simulations for mixtures of hard spheres and dumbbells. TPT does not hold for l<d. In order to have a quantitative expression for fused disphere properties, we propose an interpolation formula that performs well for both symmetric dispheres and asymmetric dispheres. This formula, though empirical, performs better than similar interpolative schemes proposed by Phan–Kierlik–Rosinberg. We have also derived purely thermodynamic formulas based on the TPT theory. These formulas can be exploited if one uses many of the existing thermodynamic properties correlations for mixtures.

1.
M. S.
Wertheim
,
J. Stat. Phys.
35
,
19
(
1984
);
M. S.
Wertheim
,
35
,
35
(
1984
); ,
J. Stat. Phys.
M. S.
Wertheim
,
42
,
459
(
1986
); ,
J. Stat. Phys.
M. S.
Wertheim
,
42
,
477
(
1986
); ,
J. Stat. Phys.
M. S.
Wertheim
,
J. Chem. Phys.
85
,
2929
(
1986
);
M. S.
Wertheim
,
M. S.
Wertheim
,
87
,
7323
(
1987
); ,
J. Chem. Phys.
M. S.
Wertheim
,
88
,
1145
(
1988
).,
J. Chem. Phys.
2.
E.
Kierlik
and
M. L.
Rosinberg
,
J. Stat. Phys.
68
,
1037
(
1992
);
E.
Kierlik
and
M. L.
Rosinberg
,
Phy. Rev. A
44
,
5025
(
1991
);
E.
Kierlik
and
M. L.
Rosinberg
,
J. Chem. Phys.
97
,
9222
(
1991
);
E.
Kierlik
and
M. L.
Rosinberg
,
J. Chem. Phys.
99
,
3950
(
1993
); ,
J. Chem. Phys.
E.
Kierlik
and
M. L.
Rosinberg
,
100
,
1716
(
1994
).,
J. Chem. Phys.
3.
R.
Dickman
and
C. K.
Hall
,
J. Chem. Phys.
85
,
4108
(
1986
);
K. G.
Honnell
and
C. K.
Hall
,
J. Chem. Phys.
90
,
1841
(
1989
).,
J. Chem. Phys.
4.
Y. C.
Chiew
,
Mol. Phys.
70
,
129
(
1990
);
Y. C.
Chiew
,
J. Chem. Phys.
93
,
5067
(
1990
);
Y. C.
Chiew
,
Mol. Phys.
73
,
359
(
1991
).
5.
J. G.
Curro
and
K. S.
Schweizer
,
J. Chem. Phys.
87
,
1842
(
1987
);
K. S.
Schweizer
and
J. G.
Curro
,
Macromolecules
20
,
3070
(
1987
).
K. S.
Schweizer
and
J. G.
Curro
,
J. Chem. Phys.
89
,
3342
(
1988
).
6.
W. G.
Chapman
,
K. E.
Gubbins
,
C. G.
Joslin
, and
C. G.
Gray
,
Fluid Phase Equil.
29
,
337
(
1986
);
W. G.
Chapman
, and
K. E.
Gubbins
,
Pure Appl. Chem.
59
,
53
(
1987
);
C. G.
Joslin
,
C. G.
Gray
,
W. G.
Chapman
, and
K. E.
Gubbins
,
Mol. Phys.
62
,
843
(
1987
);
W. G.
Chapman
,
G.
Jackson
, and
K. E.
Gubbins
,
Mol. Phys.
65
,
1057
(
1988
); ,
Mol. Phys.
W. G.
Chapman
,
K. E.
Gubbins
,
G.
Jackson
, and
M.
Radosz
,
Fluid Phase Equil.
52
,
31
(
1989
);
W. G.
Chapman
,
K. E.
Gubbins
,
G.
Jackson
, and
M.
Radosz
,
I&EC Res.
29
,
31
(
1990
).
7.
G.
Jackson
,
W. G.
Chapman
, and
K. E.
Gubbins
,
Mol. Phys.
65
,
1
(
1988
);
G.
Jackson
and
K. E.
Gubbins
,
Pure Appl. Chem.
61
,
1021
(
1989
);
G.
Jackson
,
Mol. Phys.
72
,
1365
(
1991
).
8.
G.
Jackson
,
Mol. Phys.
72
,
1365
(
1991
);
D. G.
Green
and
G.
Jackson
,
J. Chem. Soc. Faraday Trans.
88
,
1395
(
1992
);
D. G.
Green
and
G.
Jackson
,
J. Chem. Phys.
101
,
3190
(
1994
);
S. H.
Huang
and
M.
Radosz
,
Ind. Eng. Chem. Res.
29
,
2284
(
1990
);
S. H.
Huang
and
M.
Radosz
,
Ind. Eng. Chem. Res.
30
,
1994
(
1991
).
9.
J. K.
Johnson
,
E. A.
Mueller
, and
K. E.
Gubbins
,
J. Chem. Phys.
98
,
6413
(
1994
).
10.
W. G.
Chapman
,
J. Chem. Phys.
93
,
4299
(
1990
);
J. K.
Johnson
and
K. E.
Gubbins
,
Mol. Phys.
77
,
1033
(
1992
);
D.
Ghonasgi
and
W. G.
Chapman
,
Mol. Phys.
79
,
291
(
1993
); ,
Mol. Phys.
D.
Ghonasgi
and
W. G.
Chapman
,
Mol. Phys.
80
,
161
(
1993
); ,
Mol. Phys.
D.
Ghonasgi
and
W. G.
Chapman
,
AIChE J.
40
,
878
(
1994
);
D.
Ghonasgi
and
W. G.
Chapman
,
J. Chem. Phys.
100
,
6633
(
1994
);
D.
Ghonasgi
,
V.
Perez
, and
W. G.
Chapman
,
J. Chem. Phys.
101
,
6880
(
1994
); ,
J. Chem. Phys.
D.
Ghonasgi
and
W. G.
Chapman
,
Mol. Phys.
83
,
145
(
1994
).
11.
R. P.
Sear
and
G.
Jackson
,
Mol. Phys.
82
,
473
(
1994
).
R. P.
Sear
and
G.
Jackson
,
Mol. Phys.
83
,
961
(
1994
); ,
Mol. Phys.
D.
Ghonasgi
and
W. G.
Chapman
,
AIChE J.
40
,
878
(
1994
).
12.
J. M.
Walsh
and
K. E.
Gubbins
,
J. Phys. Chem.
94
,
5115
(
1990
).
M. D.
Amos
and
G.
Jackson
,
J. Chem. Phys.
96
,
4604
(
1992
).
13.
H.
Reiss
,
H. L.
Frisch
, and
J. L.
Lebowitz
,
J. Chem. Phys.
31
,
369
(
1959
);
R. M.
Gibbons
,
Mol. Phys.
17
,
81
(
1969
).
14.
E.
Meeron
and
A. J. F.
Siegert
,
J. Chem. Phys.
48
,
3139
(
1968
);
E. W.
Grundke
and
D.
Henderson
,
Mol. Phys.
24
,
269
(
1972
).
15.
B.
Widom
,
J. Chem. Phys.
39
,
2808
(
1963
);
B.
Widom
,
J. Stat. Phys.
19
,
563
(
1978
).
16.
See, for example, in L. L. Lee, Molecular Thermodynamics of Nonideal Fluids (Butterworths, Boston, 1988).
17.
L.
Verlet
,
Mol. Phys.
41
,
183
(
1980
).
18.
K. S.
Shing
and
K. E.
Gubbins
,
Mol. Phys.
43
,
717
(
1981
);
K. S.
Shing
and
K. E.
Gubbins
,
Mol. Phys.
46
,
1109
(
1982
); ,
Mol. Phys.
S.
Romano
and
K.
Singer
,
Mol. Phys.
37
,
1765
(
1979
); ,
Mol. Phys.
J. G.
Powles
,
Mol. Phys.
41
,
715
(
1980
).,
Mol. Phys.
19.
L. L. Lee and K. S. Shing, Potential Distribution of Anisotropic Molecules (West Coast Statistical Mechanics Conference, 1989).
20.
S. K.
Kumar
,
I.
Szleifer
, and
A. Z.
Panagiotopoulos
,
Phys. Rev. Lett.
66
,
2935
(
1991
);
edited Computer Simulations of Polymers, edited by E. A. Colbourn (Longman, Harlow, 1992).
21.
T.
Boublík
,
Mol. Phys.
59
,
775
(
1986
).
22.
L. L.
Lee
,
J. Chin. Inst. Chem. Eng.
19
,
337
(
1988
).
23.
G.
Stell
and
Y.
Zhou
,
J. Chem. Phys.
91
,
3618
(
1989
);
K.
Olaussen
and
G.
Stell
,
J. Stat. Phys.
62
,
221
(
1991
);
Y.
Zhou
and
G.
Stell
,
J. Chem. Phys.
96
,
1504
(
1992
);
Y.
Zhou
and
G.
Stell
,
J. Chem. Phys.
96
,
1507
(
1992
); ,
J. Chem. Phys.
G.
Stell
and
Y.
Zhou
,
Fluid Phase Equil.
79
,
1
(
1992
).
24.
L. L.
Lee
,
J. Chem. Phys.
97
,
8606
(
1992
).
25.
D. J.
Tildesley
and
W. B.
Streett
,
Mol. Phys.
41
,
85
(
1980
).
26.
T.
Boublík
,
J. Chem. Phys.
63
,
4084
(
1975
);
I.
Nezbeda
and
T.
Boublík
,
Czech. J. Phys. B
27
,
1073
(
1977
);
T.
Boublík
,
Mol. Phys.
44
,
1369
(
1981
);
T.
Boublík
,
59
,
371
(
1986
).,
Mol. Phys.
27.
S.
Phan
,
E.
Kierlik
, and
M. L.
Rosinberg
,
J. Chem. Phys.
101
,
7997
(
1994
).
28.
R. J.
Speedy
and
H.
Reiss
,
Mol. Phys.
72
,
999
(
1991
).
29.
J. G.
Kirkwood
and
F. P.
Buff
,
J. Chem. Phys.
19
,
774
(
1951
). See, for example, a review by L. L. Lee, P. G. Debenedetti, and H. D. Cochran, in Supercritical Fluid Technology, edited by T. J. Bruno and J. F Ely (CRC, Boca Raton, 1991).
30.
B.
Widom
,
J. Chem. Phys.
39
,
2808
(
1963
).
31.
L. L.
Lee
and
K. S.
Shing
,
J. Chem. Phys.
91
,
477
(
1989
).
32.
S.
Labik
,
A.
Malijevsky
, and
W. R.
Smith
,
Mol. Phys.
83
,
983
(
1994
);
S.
Labik
,
A.
Malijevsky
, and
W. R.
Smith
,
83
,
1223
(
1994
).,
Mol. Phys.
33.
J. Yvon, La Théorie Statistique des Fluides et l’Equation d’Etat (Actualités Scientifiques et Industrielles, No. 203, Paris, 1935).
34.
See, for example, E. Lomba and L. L. Lee, Proceedings of the 12th Sym posium on Thermophysical Properties (Boulder, Colorado, 1994).
35.
E.
Byckling
,
Physica
27
,
1030
(
1961
);
R. J.
Speedy
and
H.
Reiss
,
Mol. Phys.
72
,
999
(
1991
);
R. K.
Bowles
and
R. J.
Speedy
,
Mol. Phys.
83
,
113
(
1994
).,
Mol. Phys.
36.
Y.
Zhou
and
G.
Stell
,
J. Chem. Phys.
96
,
1507
(
1992
).
37.
M. S.
Wertheim
,
J. Chem. Phys.
87
,
7323
(
1987
).
38.
D.
Ghonasgi
and
W. G.
Chapman
,
J. Chem. Phys.
100
,
6633
(
1994
).
This content is only available via PDF.
You do not currently have access to this content.