A theory for time correlation functions in liquids is developed based on the optimized quadratic approximation for liquid state potential energy functions. The latter approximation leads to the rigorous mathematical definition of inherent structures in liquids and their vibrational fluctuations, in turn leading to the concept of inherent normal modes in the liquid state. These normal modes are called ‘‘optimized normal modes.’’ Unlike normal modes based on instantaneous liquid state configurations, the optimized normal modes are stable, having real‐valued frequencies, and each inherent liquid state structure has a different set of modes associated with it. By including a single phenomenological decay function which captures the average transition rate between the different sets of normal modes, velocity time correlation functions and dynamical friction kernels for solute bonds can be predicted in good agreement with direct molecular dynamics simulation results.

1.
M. Born and K. Huang, Dynamical Theory of Crystal Lattices (Clarendon, Oxford, 1955).
2.
C. Kittel, Quantum Theory of Solids (Wiley, New York, 1963).
3.
B. J. Berne and R. Pecora, Dynamic Light Scattering (Wiley-Interscience, New York, 1976).
4.
R.
Zwanzig
,
J. Stat. Phys.
9
,
215
(
1973
).
5.
F. H.
Stillinger
and
T. A.
Weber
,
Phys. Rev. A
25
,
978
(
1982
).
6.
F. H.
Stillinger
and
T. A.
Weber
,
J. Chem. Phys.
80
,
4434
(
1984
).
7.
F. H.
Stillinger
and
T. A.
Weber
,
J. Chem. Phys.
81
,
5089
(
1984
).
8.
R.
Zwanzig
,
J. Chem. Phys.
79
,
4507
(
1983
).
9.
B.
Madan
,
G.
Seeley
, and
T.
Keyes
,
J. Chem. Phys.
92
,
7565
(
1990
).
10.
B.
Madan
,
G.
Seeley
, and
T.
Keyes
,
J. Chem. Phys.
94
,
6762
(
1991
).
11.
J.
Cao
and
G. A.
Voth
,
J. Chem. Phys.
102
,
3337
(
1995
).
12.
R. Kubo, N. Toda, and N. Hashitsume, Statistical Physics II (Springer, Berlin, 1985).
13.
P.
Hanggi
,
P.
Talkner
, and
M.
Borkovec
,
Rev. Mod. Phys.
62
,
250
(
1990
).
14.
R.
Zwanzig
and
M.
Bixon
,
Phys. Rev. A
2
,
2005
(
1970
).
15.
B. J.
Berne
,
J. Chem. Phys.
56
,
2164
(
1972
).
16.
B. J.
Berne
,
M. E.
Tuckerman
,
J. E.
Straub
, and
A. L. R.
Bug
,
J. Chem. Phys.
93
,
5084
(
1990
).
17.
G.
Seeley
and
T.
Keyes
,
J. Chem. Phys.
91
,
5581
(
1989
).
18.
B.
Xu
and
R. M.
Stratt
,
J. Chem. Phys.
92
,
1923
(
1990
).
19.
M.
Buchner
,
B. M.
Ladanyi
, and
R. M.
Stratt
,
J. Chem. Phys.
97
,
8522
(
1992
).
20.
G.
Seeley
,
T.
Keyes
, and
B.
Madan
,
J. Phys. Chem.
96
,
4074
(
1992
).
21.
Y.
Wan
and
R.
Stratt
,
J. Chem. Phys.
100
,
5123
(
1994
).
22.
T. M.
Wu
and
R. F.
Loring
,
J. Chem. Phys.
97
,
8568
(
1992
).
23.
T. M.
Wu
and
R. F.
Loring
,
J. Chem. Phys.
99
,
8936
(
1993
).
24.
T.
Keyes
,
J. Chem. Phys.
101
,
5081
(
1994
).
25.
J.
Cao
and
G. A.
Voth
,
J. Chem. Phys.
101
,
6184
(
1994
).
26.
M.
Cho
,
G. R.
Fleming
,
S.
Saito
,
I.
Ohmine
, and
R. M.
Stratt
,
J. Chem. Phys.
100
,
6672
(
1994
).
27.
B. M.
Ladanyi
and
R. M.
Stratt
,
J. Phys. Chem.
99
,
2502
(
1995
).
28.
P. F. Choquard, The Anharmonic Crystals (Benjamin, New York, 1967).
29.
V.
Samathiyakanit
and
H. R.
Glyde
,
J. Phys. C
6
,
1166
(
1973
).
30.
J. P.
Stoessel
and
P. G.
Wolynes
,
J. Chem. Phys.
80
,
4502
(
1984
), this paper contains an application of the self-consistent phonon idea to an amorphous material (i.e., the hard sphere glass).
31.
A TST-like approach has been developed in Ref. 24 within the context of the INM theory to describe liquid state self-diffusion. This approach assumes a relationship exists between the barrier height distribution and the unstable INM distribution. Since there are no unstable modes in the ONM spectrum, a rather different approach would be required to estimate the barrier height distribution between the inherent structures in the DNM theory. Nevertheless, the spirit of the two approaches would be the same.
32.
E.
Pollak
,
J. Chem. Phys.
85
,
865
(
1986
).
33.
H. A.
Kramers
,
Physica
7
,
284
(
1940
).
34.
R. F.
Grote
and
J. T.
Hynes
,
J. Chem. Phys.
73
,
2715
(
1980
).
35.
G. A.
Voth
,
Chem. Phys. Lett.
170
,
289
(
1990
).
This content is only available via PDF.
You do not currently have access to this content.