To study the reliability of the recently developed explicitly correlated coupled cluster method (CCSDT1‐R12) we have performed calculations on the four‐electron systems Be, Li, and LiH on various levels of perturbation theory and coupled cluster theory with and without explicit linear rij terms. The convergence of the total energy with increasing size of the basis is much faster than for the conventional coupled cluster approach. Our CCSDT1‐R12 energies of −14.667261 Eh for Be and −7.500671 Eh for the Li ground state are the best ones computed so far and are close to previous estimates of the CCSDT 1 basis set limits. The Be result differs from the ‘‘experimental’’ nonrelativistic energy by ca. 0.1 mEh, mainly due to neglect of quadruple excitations. Our Born–Oppenheimer energy of LiH at the equilibrium distance of −8.070487 Eh is close to the experimental nonrelativistic energy. The binding energy (D0) of LiH with respect to Li+ and H is calculated as −7.152 eV, in agreement with the experimental value within a meV. For LiH the harmonic vibrational frequencies and other related spectroscopic constants are studied in their basis dependence as well. The equilibrium distance and the harmonic vibrational frequency of LiH are much less sensitive to the inclusion of terms that explicitly depend on the interelectronic coordinates. Basis set superposition errors are much smaller in the R12 approach than in the conventional calculations, especially for the smaller basis sets.

1.
E. A.
Hylleraas
,
Adv. Chem. Phys.
1
,
1
(
1964
), and references therein.
2.
C. L.
Pekeris
,
Phys. Rev.
112
,
1649
(
1958
);
C. L.
Pekeris
,
126
,
1470
(
1962
).,
Phys. Rev.
3.
W.
Kolos
and
L.
Wolniewicz
,
J. Chem. Phys.
41
,
3663
(
1964
);
W.
Kolos
and
L.
Wolniewicz
,
43
,
2429
(
1965
); ,
J. Chem. Phys.
W.
Kolos
and
L.
Wolniewicz
,
Phys. Rev. Lett.
20
,
243
(
1968
);
L.
Wolniewicz
,
J. Chem. Phys.
99
,
1851
(
1993
);
W.
Kolłos
and
J.
Rychlewski
,
J. Chem. Phys.
98
,
3960
(
1993
).,
J. Chem. Phys.
4.
E. A.
Hylleraas
,
Z. Phys.
54
,
347
(
1929
);
J. S.
Sims
and
S.
Hagström
,
Phys. Rev. A
4
,
908
(
1971
);
J. S.
Sims
and
S.
Hagström
,
J. Chem. Phys.
55
,
4699
(
1971
);
D. Frye, A. Preiskorn, G. C. Lie, and E. Clementi, in Modern Techniques in Computational Chemistry: MOTECC-90, edited by E. Clementi (Escom, Leiden, 1990).
5.
S. F.
Boys
,
Proc. R. Soc. London Ser. A
258
,
402
(
1960
);
K.
Singer
,
Proc. R. Soc. London Ser. A
258
,
412
(
1960
); ,
Proc. R. Soc. London, Ser. A
L.
Adamowicz
and
A. J.
Sadlej
,
J. Chem. Phys.
67
,
4298
(
1977
);
L.
Adamowicz
and
A. J.
Sadlej
,
Chem. Phys. Lett.
48
,
305
(
1977
);
L.
Adamowicz
and
A. J.
Sadlej
,
J. Chem Phys.
69
,
3992
(
1978
);
L.
Adamowicz
and
A. J.
Sadlej
,
Acta Phys. Pol. A
54
,
73
(
1978
);
L.
Adamowicz
and
A. J.
Sadlej
,
Chem. Phys. Lett.
53
,
377
(
1978
);
L.
Adamowicz
,
Acta Phys. Pol. A
53
,
471
(
1978
);
L.
Adamowicz
,
Int. J. Quantum Chem.
13
,
265
(
1978
).
6.
W.
Kutzelnigg
,
Theor. Chim. Acta
68
,
445
(
1985
).
7.
W.
Klopper
and
W.
Kutzelnigg
,
Chem. Phys. Lett.
134
,
17
(
1986
).
8.
W.
Kutzelnigg
and
W.
Klopper
,
J. Chem. Phys.
94
,
1985
(
1991
).
9.
V.
Termath
,
W.
Klopper
, and
W.
Kutzelnigg
,
J. Chem. Phys.
94
,
2002
(
1991
).
10.
W.
Klopper
and
W.
Kutzelnigg
,
J. Chem. Phys.
94
,
2020
(
1991
).
11.
W.
Klopper
,
Chem. Phys. Lett.
186
,
583
(
1991
).
12.
W.
Klopper
,
R.
Röhse
, and
W.
Kutzelnigg
,
Chem. Phys. Lett.
178
,
455
(
1991
).
13.
J.
Noga
,
W.
Kutzelnigg
, and
W.
Klopper
,
Chem. Phys. Lett.
199
,
497
(
1992
).
14.
K.
Szalewicz
,
B.
Jeziorski
,
H. J.
Monkhorst
, and
J. G.
Zabolitzky
,
J. Chem. Phys.
78
,
1420
(
1983
);
K.
Szalewicz
,
B.
Jeziorski
,
H. J.
Monkhorst
, and
J. G.
Zabolitzky
,
79
,
5543
(
1983
).,
J. Chem. Phys.
15.
S. A.
Alexander
,
H. J.
Monkhorst
, and
K.
Szalewicz
,
J. Chem. Phys.
85
,
5821
(
1986
);
S. A.
Alexander
,
H. J.
Monkhorst
, and
K.
Szalewicz
,
87
,
3976
(
1987
).,
J. Chem. Phys.
16.
K. B.
Wenzel
and
J. G.
Zabolitzki
,
J. Chim. Phys.
84
,
691
(
1987
).
17.
R.
Bukowski
,
B.
Jeziorski
, and
K.
Szalewicz
,
J. Chem. Phys.
100
,
1366
(
1994
);
R.
Bukowski
,
B.
Jeziorski
,
S.
Rybak
, and
K.
Szalewicz
,
J. Chem. Phys.
102
,
888
(
1995
); ,
J. Chem. Phys.
B. Jeziorski, R. Bukowski, and K. Szalewicz, Int. J. Quantum Chem. (in press).
18.
P. M.
Kozlowski
and
L.
Adamowicz
,
J. Chem. Phys.
97
,
5063
(
1992
);
P. M.
Kozlowski
and
L.
Adamowicz
,
96
,
9013
(
1992
); ,
J. Chem. Phys.
P. M.
Kozlowski
and
L.
Adamowicz
,
J. Comput. Chem.
13
,
602
(
1992
);
E.
Schwegler
,
P. M.
Kozlowski
, and
L.
Adamowicz
,
J. Comput. Chem.
14
,
566
(
1993
).
19.
W.
Cencek
and
J.
Rychlewski
,
J. Chem. Phys.
98
,
1252
(
1993
);
W.
Kolos
and
J.
Rychlewski
,
J. Mol. Spectrosc.
166
,
12
(
1994
).
20.
J.
Komasa
and
A. J.
Thakkar
,
Mol. Phys.
78
,
1039
(
1993
);
J.
Komasa
and
A. J.
Thakkar
,
Chem. Phys. Lett.
222
,
65
(
1994
).
21.
W.
Klopper
and
J.
Almlöf
,
J. Chem. Phys.
99
,
5167
(
1993
).
22.
W.
Klopper
,
H. P.
Lüthi
,
Th.
Brupbacher
, and
A.
Bauder
,
J. Chem. Phys.
101
,
9747
(
1994
).
23.
T. Bürgi, S. Graf, S. Leutwyler, and W. Klopper, J. Chem. Phys. (in press);
W. Klopper, M. Schütz, H. P. Lüthi, and S. Leutwyler, J. Chem. Phys. (in press).
24.
J.
Noga
and
R. J.
Bartlett
,
J. Chem. Phys.
86
,
7041
(
1987
);
J.
Noga
and
R. J.
Bartlett
,
89
,
3401
(E) (
1988
).,
J. Chem. Phys.
25.
J.
Noga
and
W.
Kutzelnigg
,
J. Chem. Phys.
101
,
7738
(
1994
).
26.
J. Noga, D. Tunega, W. Klopper and W. Kutzelnigg (to appear).
27.
R.
Röhse
,
W.
Klopper
, and
W.
Kutzelnigg
,
J. Chem. Phys.
99
,
8830
(
1993
);
R.
Röhse
,
W.
Kutzelnigg
,
R.
Jaquet
, and
W.
Klopper
,
J. Chem. Phys.
101
,
2231
(
1994
).,
J. Chem. Phys.
28.
J.
Čížek
,
J. Chem. Phys.
45
,
4256
(
1966
);
J.
Čížek
,
Adv. Chem. Phys.
14
,
35
(
1969
).
29.
W.
Kutzelnigg
,
J. Chem. Phys.
77
,
3080
(
1982
);
W.
Kutzelnigg
,
80
,
822
(
1984
).,
J. Chem. Phys.
30.
B. G.
Adams
and
J.
Paldus
,
Phys. Rev. A
20
,
1
(
1979
).
31.
W.
Kutzelnigg
,
J. Chem. Phys.
82
,
4166
(
1985
).
32.
Y. S.
Lee
,
S. A.
Kucharski
, and
R. J.
Bartlett
,
J. Chem. Phys.
81
,
5906
(
1984
).
33.
M.
Urban
,
J.
Noga
,
S. J.
Cole
, and
R. J.
Bartlett
,
J. Chem. Phys.
83
,
404
(
1985
).
34.
K.
Raghavachari
,
G. W.
Trucks
,
J. A.
Pople
, and
M.
Head-Gordon
,
Chem. Phys. Lett.
157
,
479
(
1989
).
35.
T. U. Helgaker, HERMIT program, 1986 (unpublished).
36.
T. U.
Helgaker
,
J.
Almlöf
,
H. J. Aa.
Jensen
, and
P.
Jo/rgensen
,
J. Chem. Phys.
84
,
6266
(
1986
).
37.
T. U.
Helgaker
and
P. R.
Taylor
,
Theor. Chim. Acta
83
,
177
(
1992
).
38.
W.
Klopper
and
R.
Röhse
,
Theor. Chim. Acta
83
,
441
(
1992
).
39.
A.-M.
Mårtensson-Pendrill
,
S. A.
Alexander
,
L.
Adamowicz
,
N.
Oliphant
,
J.
Olsen
,
P.
Öster
,
H. M.
Quiney
,
S.
Salomonson
, and
D.
Sundholm
,
Phys. Rev. A
43
,
3355
(
1991
).
40.
S.
Salomonson
and
P.
Öster
,
Phys. Rev. A
41
,
2670
(
1990
).
41.
E.
Lindroth
,
H.
Persson
,
S.
Salomonson
, and
A.-M.
Mårtensson-Pendrill
,
Phys. Rev. A
45
,
1493
(
1992
).
42.
D.
Layzer
,
Ann. Phys. (N.Y.)
8
,
271
(
1959
).
43.
H.
Ågren
,
J.
Olsen
,
H. J. Aa.
Jensen
, and
P.
Jo/rgensen
,
Phys. Rev. A
40
,
2265
(
1989
).
44.
C.
Froese-Fischer
,
J. Phys. B
26
,
855
(
1993
).
45.
W.
Klopper
,
J. Chem. Phys.
102
,
6168
(
1995
).
46.
C. F.
Bunge
,
Phys. Rev. A
14
,
2496
(
1977
).
47.
N.
Oliphant
and
L.
Adamowicz
,
J. Chem. Phys.
95
,
6645
(
1991
).
48.
M. J.
Bearpark
,
N. C.
Handy
,
R. D.
Amos
, and
P. E.
Maslen
,
Theor. Chim. Acta
79
,
361
(
1991
).
49.
W. Klopper, C4 Bulletin No. 7, p. 14, ETH Zürich (1993).
50.
S. Vogtner, W. Klopper, J. Noga, and W. Kutzelnigg (to be published).
51.
K. P. Huber and G. Herzberg, Constants of Diatomic Molecules (Van Nostrand, New York, 1979).
This content is only available via PDF.
You do not currently have access to this content.