The full‐valence photoelectron (PE) spectrum of SnCl4 excited by synchrotron radiation in the ultraviolet (UV) region is reported here for the first time, and compared with the analogous spectrum of SnCl2 previously published. Electron correlation effects in the different valence spectral regions are experimentally and theoretically analyzed for both tin chlorides. The theoretical results are obtained at abinitio 2h‐1p CI level. Total‐ion‐yield (TIY) spectra excited by synchrotron radiation are obtained for both molecules in the Sn 4d−1 thresholds region for the first time. Sn 4d excited states in the two chlorides are hence identified through the resonant features displayed by the TIY spectra. The assignment is in good qualitative agreement with the excitation energies and oscillator strengths calculated at abinitio CI level. Clear differences exhibited by both PE and TIY spectra reported in this work originate from the different metal oxidation state in the two apparently similar chlorides, or equivalently, from the different involvement of the valence atomic orbitals of tin to form the chemical bonds of the molecule. Inner‐valence ionizations in the investigated molecules are shown to be a sensitive probe of the halogen chemical environment, being related to the Sn–Cl bond polarization.

1.
S.
Stranges
,
M. Y.
Adam
,
C.
Cauletti
,
M.
de Simone
,
C.
Furlani
,
M. N.
Piancastelli
,
P.
Decleva
, and
A.
Lisini
,
J. Chem. Phys.
97
,
4764
(
1992
).
2.
L. S.
Wang
,
B.
Niu
,
Y. T.
Lee
, and
D. A.
Shirley
,
J. Chem. Phys.
92
,
899
(
1990
).
3.
M. G.
White
,
R. A.
Rosemberg
,
S.-T.
Lee
, and
D. A.
Shirley
,
J. Electron Spectrosc. Relat. Phenom.
17
,
323
(
1979
).
4.
See, for example,
P.
Pyykko
,
Chem. Rev.
88
,
563
(
1988
);
K.
Balasubramanian
,
J. Chem. Phys.
93
,
6585
(
1989
).
5.
L. S.
Wang
,
Y. T.
Lee
,
D. A.
Shirley
,
K.
Balasubramanian
, and
P.
Feng
,
J. Chem. Phys.
93
,
6310
(
1990
).
6.
L. S.
Wang
,
B.
Niu
,
Y. T.
Lee
,
D. A.
Shirley
,
E.
Ghelichkhani
, and
E. R.
Grant
,
J. Chem. Phys.
93
,
6318
(
1990
).
7.
L. S.
Wang
,
B.
Niu
,
Y. T.
Lee
,
D. A.
Shirley
,
E.
Ghelichkhani
, and
E. R.
Grant
,
J. Chem. Phys.
93
,
6327
(
1990
).
8.
J. M.
Benson
,
I.
Novak
, and
A. W.
Potts
,
J. Phys. B
20
,
6257
(
1987
).
9.
I.
Novak
and
A. W.
Potts
,
J. Phys. B
17
,
3713
(
1984
).
10.
L. S.
Wang
,
B.
Niu
,
Y. T.
Lee
, and
D. A.
Shirley
,
Chem. Phys. Lett.
158
,
297
(
1989
).
11.
See for an example of high temperature effusive beam apparatus,
D. K.
Bulgin
,
J. M.
Dyke
,
F.
Goodfellow
,
N.
Jonathan
,
E.
Lee
, and
A.
Morris
,
J. Electron Spectrosc. Relat. Phenom.
12
,
67
(
1977
);
J.
Berkowitz
,
J. Chem. Phys.
56
,
2766
(
1972
);
and for a high temperature supersonic beam device,
L. S.
Wang
,
J. E.
Reutt-Robey
,
B.
Niu
,
Y. T.
Lee
, and
D. A.
Shirley
,
J. Electron Spectrosc. Relat. Phenom.
51
,
513
(
1990
).
12.
For a few representative examples of heavy metal containing molecules studies see (a)
I.
Novak
and
A. W.
Potts
,
J. Chem. Soc. Dalton Trans.
1983
,
2211
;
(b)
E. P. F.
Lee
,
A. W.
Potts
, and
J. E.
Bloor
,
Proc. R. Soc. London Ser. A
381
,
373
(
1982
);
(c)
G. M.
Bancroft
,
E.
Pellach
, and
J. S.
Tse
,
Inorg. Chem.
21
,
2950
(
1982
);
(d)
G. M.
Bancroft
,
D. J.
Bristow
, and
L. L.
Coatsworth
,
Chem. Phys. Lett.
82
,
344
(
1981
), and references therein;
G. M.
Bancroft
,
L. L.
Coatsworth
,
D. K.
Creber
, and
J.
Tse
,
Chem. Phys. Lett.
50
,
228
(
1977
); ,
Chem. Phys. Lett.
(e)
A. W.
Potts
and
M. L.
Lyus
,
J. Electron Spectrosc. Relat. Phenom.
13
,
327
(
1978
);
(f)
S.
Evans
and
F.
Orchard
,
J. Electron Spectrosc. Relat. Phenom.
6
,
207
(
1975
); ,
J. Electron Spectrosc. Relat. Phenom.
(g)
J.
Berkowitz
,
J. Chem. Phys.
56
,
2766
(
1972
);
(h)
J.
Berkowitz
and
J.
Dehmer
,
J. Chem. Phys.
57
,
3194
(
1972
).,
J. Chem. Phys.
13.
See, for instance,
J. E.
Bice
,
K. H.
Tan
,
G. M.
Bancroft
, and
B. W.
Yates
,
J. Chem. Phys.
87
,
821
(
1987
);
J. E.
Bice
,
K. H.
Tan
,
G. M.
Bancroft
, and
J. S.
Tse
,
Inorg. Chem.
26
,
4106
(
1987
);
V. Dzidzonou, J. Viefhaus, O. Hemmers, B. Langer, and U. Becker, in Proceedings of the International Workshop on Photoionization IPW-92, edited by U. Becker and U. Heinzmann (AMS, New York, 1992), p. 149.
14.
(a)
P.
Balzer
,
M.
Larsson
,
L.
Karlsson
,
M.
Lundqvist
, and
B.
Wannberg
,
Phys. Rev. A
49
,
737
(
1994
);
(b)
P.
Balzer
,
M.
Larsson
,
L.
Karlsson
,
B.
Wannberg
, and
M.
Carlsson Göethe
,
Phys. Rev. A
46
,
5545
(
1992
); ,
Phys. Rev. A
(c)
P.
Balzer
,
B.
Wannberg
,
L.
Karlsson
,
M.
Carlsson Göethe
, and
M.
Larsson
,
Phys. Rev. A
45
,
4374
(
1992
); ,
Phys. Rev. A
(d)
Z. F.
Lui
,
G. M.
Bancroft
,
L. L.
Coatsworth
, and
K. H.
Tan
,
Chem. Phys. Lett.
203
,
337
(
1993
);
(e)
M. Y.
Adam
,
M. P.
Kaene
,
A.
Naves de Brito
,
N.
Correia
,
B.
Wannberg
,
P.
Balzer
,
L.
Karlsson
, and
S.
Svensson
,
Chem. Phys.
164
,
123
(
1992
).
15.
P.
Baltzer
,
L.
Karlsson
,
M.
Lundqvist
, and
B.
Wannberg
,
Rev. Sci. Instrum.
64
,
2179
(
1993
);
P.
Baltzer
,
B.
Wannberg
, and
M.
Carlsson Göethe
,
Rev. Sci. Instrum.
62
,
643
(
1991
); ,
Rev. Sci. Instrum.
M.
Domke
,
A.
Puschmann
,
C.
Xue
,
D. A.
Shirley
,
G.
Kaindl
, and
H.
Petersen
,
Synch. Radiat. News
3
,
21
(
1990
).
16.
L. S.
Cederbaum
,
W.
Domcke
,
J.
Schirmer
, and
W.
von Niessen
,
Adv. Chem. Phys.
65
,
115
(
1986
).
17.
L. S.
Cederbaum
,
J. Chem. Phys.
78
,
5714
(
1983
).
18.
M. de Simone, M. Y. Adam, S. Stranges, C. Cauletti, and M. N. Piancastelli, Chem. Phys. (in press).
19.
P.
Morin
,
M. Y.
Adam
,
J.
Delwiche
,
M. J.
Hubin-Franskin
,
I.
Nenner
, and
P.
Lablanquie
,
Nucl. Instrum. Methods
208
,
761
(
1983
).
20.
J. J.
Yen
and
I.
Lindau
,
At. Data Nucl. Data Tables
32
,
37
(
1985
).
21.
P. J.
Basset
and
D. R.
Lloyd
,
J. Chem. Soc. A
1971
,
641
.
22.
M. Y.
Adam
,
L.
Hellner
,
G.
Dujardin
,
W. A.
Svensson
,
P.
Martin
, and
F.
Combet-Farnoux
,
J. Phys. B
22
,
2141
(
1989
).
23.
L.
Frost
,
A. M.
Grisogono
,
I. E.
McCarthy
,
E.
Weigold
,
C. E.
Brion
,
A. O.
Bawagan
,
P. K.
Mukherjee
,
W.
von Niessen
,
M.
Rosi
, and
A.
Sgamellotti
,
Chem. Phys.
113
,
1
(
1987
).
24.
A.
Lisini
,
P.
Decleva
, and
G.
Fronzoni
,
J. Mol. Struct. (Theochem.)
228
,
97
(
1991
);
A.
Lisini
,
M.
Brosolo
,
P.
Decleva
, and
G.
Fronzoni
,
J. Mol. Struct. (Theochem.)
253
,
333
(
1992
).,
J. Mol. Struct.: THEOCHEM
25.
J. C.
Green
,
M. L. H.
Green
,
P. J.
Joachim
,
A. F.
Orchard
, and
D. W.
Turner
,
Philos. Trans. R. Soc. London Ser. A
268
,
111
(
1970
).
26.
W. L.
Jolly
,
K. D.
Bomben
, and
C. J.
Eyermann
,
At. Data Nucl. Data Tables
31
,
491
(
1984
).
27.
As measured from the He IIβ satellite line as exciting photon source on a Perkin Elmer PS18 spectrometer modified with a dual He I/He II lamp (Helectros development) and calibrating against Ar and He s−1 ionization lines (unpublished).
28.
R. G.
Egdell
,
I. L.
Fragala
, and
A. F.
Orchard
,
J. Electron Spectrosc. Relat. Phenom.
17
,
267
(
1979
).
29.
R.
Bertoncello
,
J. P.
Daudey
,
G.
Granozzi
, and
U.
Russo
,
Organometall.
5
,
1866
(
1986
).
30.
J.
Fernandez
,
G.
Lespes
, and
A.
Dargelos
,
Chem. Phys.
111
,
97
(
1986
).
31.
A. W.
Potts
and
W. C.
Price
,
Proc. R. Soc. London Ser. A
326
,
165
(
1972
).
32.
W. C.
Davidsohn
and
M. C.
Henry
,
Chem. Rev.
67
,
73
(
1967
).
33.
M. V.
Andreocci
,
M.
Bossa
,
C.
Cauletti
,
S.
Stranges
,
B.
Wrackmeyer
, and
K.
Horchler
,
J. Mol. Struct. (Theochem.)
254
,
171
(
1992
).
34.
Orbital energies for the highest occupied MO 19a1(HOMO),8b1(LUMO), and σSn−Cl* orbitals 13b2 and 20a1 of SnCl2 are −10.36, −0.48, 1.95, and 2.46 eV, respectively;
for 2t1(HOMO), and σSn−Cl* orbitals 10a1(LUMO) and 13t2 in SnCl4 the values are −13.25, 0.35, and 3.23 eV, respectively, as calculated by an ab initio HF-SCF method with atomic pseudopotentials
[see, for the method,
C.
Cauletti
,
M.
de Simone
, and
S.
Stranges
,
J. Electron Spectrosc. Relat. Phenom.
57
,
R1
(
1991
), and references therein].
35.
R. S.
Mulliken
,
J. Chem. Phys.
23
,
1833
(
1955
).
36.
For the method and the basis set see Ref. 1 and references therein.
37.
P.
Decleva
,
G.
Fronzoni
, and
A.
Lisini
,
Chem. Phys.
168
,
51
(
1992
).
38.
E.
Hudson
,
D. A.
Shirley
,
M.
Domke
,
G.
Remmers
,
A.
Puschmann
,
T.
Mandel
,
C.
Xue
, and
G.
Kaindl
,
Phys. Rev. A
47
,
361
(
1993
).
39.
J. L.
Dehmer
,
J. Chem. Phys.
56
,
4496
(
1972
).
40.
U.
Nielsen
,
R.
Haensel
, and
W. H. E.
Schwarz
,
J. Chem. Phys.
61
,
3581
(
1974
).
41.
Y.
Onodera
and
Y.
Toyozawa
,
J. Phys. Soc. Jpn.
22
,
833
(
1967
).
42.
In SnBr2 has been observed a doublet structure similar to C with an intensity ratio close to the statistical one. The effect due to the halogen substitution will be discussed elsewhere (same authors) as well as the asymmetry in the high energy component of structure A.
This content is only available via PDF.
You do not currently have access to this content.