Upon irradiation with 193 and 308 nm laser light photoinduced desorption of ammonia from Cu(111) was studied at three coverages less than one monolayer (ML). The linear power dependence of the desorption yield and angle‐resolved translational energy distributions of desorbed molecules indicate that desorption occurs due to an electronic excitation rather than a thermal process. Polarization measurements indicate an excitation process which is mediated by hot substrate electrons. The isotope effect, i.e., the ratio of the cross sections for photostimulated desorption (at 193 nm) of NH3 and ND3, respectively, decreases from 4.1 ± 1.2 to 1.9 ± 0.5 when the coverage—with respect to the substrate atom density—was raised from ≊0.02 to ≊0.14 ML. The magnitude of this isotope effect suggests that the energy which is required to break the molecule–surface bond is acquired in an intramolecular coordinate during a short‐lived electronic excitation. We propose that for high vibrational excitation on the ground‐state potential energy surface (PES), efficient coupling of the inversion mode with the molecule–surface coordinate leads to desorption. In order to illustrate the suggested desorption mechanism at a semiquantitative level, we performed trajectory calculations on a two‐dimensional model potential energy surface. The results predict that desorption occurs rapidly within a few vibrational periods of the umbrella mode (Tvib∼35 fs)—with comparable energy release into the translational and vibrational degrees of freedom. Ammonia is furthermore expected to desorb in an inverted geometry, i.e., with the hydrogen atoms pointing towards the surface as opposed to the adsorption geometry with the nitrogen end bound to the surface. Angular distributions of flux and mean translational energy are strongly peaked around the surface normal. Their width can be attributed to thermal motions parallel to the surface prior to excitation.

1.
W.
Ho
,
Surf. Sci.
299/300
,
996
(
1994
).
2.
E. Hasselbrink, in Laser Spectroscopy and Photochemistry on Metal Surfaces, edited by H. L. Dai and W. Ho (World Scientific, Singapore, in press).
3.
R. E.
Palmer
and
P. J.
Rous
,
Rev. Mod. Phys.
64
,
383
(
1992
).
4.
P.
Avouris
and
R. E.
Walkup
,
Annu. Rev. Phys. Chem.
40
,
173
(
1989
).
5.
I.
Hussla
,
H.
Seki
,
T. J.
Chuang
,
Z. W.
Gortel
,
H. J.
Kreuzer
, and
P.
Piercy
,
Phys. Rev. B
32
,
3489
(
1985
).
6.
X.-Y.
Zhu
and
J. M.
White
,
Phys. Rev. Lett.
68
,
3359
(
1992
).
7.
X.-Y.
Zhu
,
M.
Wolf
,
T.
Huett
, and
J. M.
White
,
J. Chem. Phys.
97
,
5856
(
1992
).
8.
X.-Y.
Zhu
,
M.
Wolf
,
T.
Huett
, and
J. M.
White
,
J. Chem. Phys.
97
,
5868
(
1992
).
9.
D.
Menzel
and
R.
Gomer
,
J. Chem. Phys.
41
,
3311
(
1964
).
10.
P. A.
Redhead
,
Can. J. Phys.
42
,
886
(
1964
).
11.
X.-Y.
Zhu
,
J. Chem. Phys.
98
,
3410
(
1993
).
12.
A. R.
Burns
,
D. R.
Jennison
,
E. B.
Stechel
, and
Y. S.
Li
,
Phys. Rev. Lett.
72
,
3895
(
1994
).
13.
A. R.
Burns
,
E. B.
Stechel
, and
D. R.
Jennison
,
J. Chem. Phys.
101
,
6318
(
1994
).
14.
M.
Head-Gordon
and
J. C.
Tully
,
J. Chem. Phys.
96
,
3939
(
1992
).
15.
M.
Morin
,
N. J.
Levinos
, and
A. L.
Harris
,
J. Chem. Phys.
96
,
3950
(
1992
).
16.
B. D.
Kay
,
T. D.
Raymond
, and
M. E.
Coltrin
,
Phys. Rev. Lett.
59
,
2792
(
1987
).
17.
R. S.
Mackay
,
K. H.
Junker
, and
J. M.
White
,
J. Vac. Sci. Technol. A
12
,
2293
(
1994
).
18.
H. C.
Chang
and
G. E.
Ewing
,
Phys. Rev. Lett.
65
,
2125
(
1990
).
19.
D.
Burgess
, Jr.
,
P. C.
Stair
, and
E.
Wietz
,
J. Vac. Sci. Technol. A
4
,
1362
(
1986
).
20.
H. Behrens and G. Ebel, in Physik Daten (Fachinformationszentrum, Karlsruhe, 1981), p. 34.
21.
F.
Budde
,
T.
Gritsch
,
A.
Mödl
,
T. J.
Chuang
, and
G.
Ertl
,
Surf. Sci.
178
,
798
(
1986
).
22.
T.
Hertel
,
E.
Knoesel
,
E.
Hasselbrink
,
M.
Wolf
, and
G.
Ertl
,
Surf. Sci.
317
,
L1147
(
1994
).
23.
W.
Steinmann
,
J. Appl. Phys. A
49
,
365
(
1989
).
24.
G.
Kubiak
,
Surf. Sci.
201
,
L475
(
1988
).
25.
K. J.
Wu
and
S. D.
Kevan
,
J. Chem. Phys.
94
,
7494
(
1991
).
26.
G. B.
Fisher
,
Chem. Phys. Lett.
79
,
452
(
1981
).
27.
C.
Benndorf
and
T. E.
Madey
,
Surf. Sci.
135
,
164
(
1983
).
28.
P. S.
Bagus
and
K.
Hermann
,
J. Chem. Phys.
81
,
1966
(
1984
).
29.
W.
Biemolt
,
G. J. C. S. v. d.
Kerkhof
,
P. R.
Davies
,
A. P. J.
Jansen
, and
R. A.
Santen
,
Chem. Phys. Lett.
188
,
477
(
1991
).
30.
E.
Hasselbrink
,
S.
Jakubith
,
S.
Nettesheim
,
M.
Wolf
,
A.
Cassuto
, and
G.
Ertl
,
J. Chem. Phys.
92
,
3154
(
1989
).
31.
F.
Weik
,
A. d.
Meijere
, and
E.
Hasselbrink
,
J. Chem. Phys.
99
,
682
(
1993
).
32.
L. G. M.
Pettersson
and
J. C. W.
Bauschlichter
,
J. Vac. Sci. Technol. A
4
,
1470
(
1985
).
33.
P. R.
Davies
and
M. W.
Roberts
,
J. Chem. Soc. Faraday Discuss. 2
88
,
361
(
1992
).
34.
L. J.
Richter
,
S. A.
Buntin
,
D. S.
King
, and
R. R.
Cavanagh
,
Phys. Rev. Lett.
186
,
427
(
1991
).
35.
X.-L.
Zhou
,
X.-Y.
Zhu
, and
J. M.
White
,
Surf. Sci. Rep.
13
,
73
(
1991
).
36.
I.
Harrison
,
V. A.
Ukraintsev
, and
A. N.
Artsyukovich
,
SPIE Proc.
2125
(in press).
37.
W. D.
Mieher
and
W.
Ho
,
J. Chem. Phys.
99
,
9279
(
1993
).
38.
M. N. R.
Ashfold
,
C. L.
Bennett
, and
R. J.
Stickland
,
Comments At. Mol. Phys.
19
,
181
(
1987
).
39.
M. B.
Arfa
,
F.
Edard
, and
M.
Tronc
,
Chem. Phys. Lett.
167
,
602
(
1990
).
40.
S.
Cvejanović
,
J.
Jureta
,
M.
Minić
, and
D.
Cvejanović
,
J. Phys. B
.
25
,
4337
(
1992
).
41.
K. L.
Stricklett
and
P. D.
Burrow
,
J. Phys. B
19
,
4241
(
1986
).
42.
S. Harris, S. Holloway, and E. Hasselbrink, Nucl Instr. Meth. (in press).
43.
J. N. Bardsley, A. Herzenberg, and F. Mandl, in Atomic Collision Processes, edited by M. R. C. McDowell (North-Holland, Amsterdam, 1964), p. 415.
44.
G. J.
Schulz
and
R. K.
Asund
,
Phys. Rev.
158
,
25
(
1967
).
45.
R. D.
Ramsier
and
J. J. T.
Yates
,
Surf. Sci. Rep.
12
,
243
(
1991
).
46.
M.
Wolf
,
S.
Nettesheim
,
J. M.
White
,
E.
Hasselbrink
, and
G.
Ertl
,
J. Chem. Phys.
94
,
4609
(
1991
).
47.
J. W.
Gadzuk
and
C. W.
Clark
,
J. Chem. Phys.
91
,
3174
(
1989
).
48.
J. W.
Gadzuk
and
S.
Holloway
,
Progr. Surf. Sci.
26
,
87
(
1987
).
49.
P.
Nordlander
and
J. C.
Tully
,
Phys. Rev. Lett.
61
,
990
(
1988
).
50.
T. Hertel, M. Wolf, and G. Ertl (in preparation).
51.
P. Saalfrank and J. Manz (private communication).
52.
E.
Hasselbrink
,
Chem. Phys. Lett.
170
,
329
(
1990
).
53.
R.
Schinke
,
J. Chem. Phys.
92
,
3195
(
1988
).
54.
J. C.
Polanyi
and
W. H.
Wong
,
J. Chem. Phys.
51
,
1439
(
1969
).
55.
S.
Holloway
and
G. R.
Darling
,
Comments At. Mol. Phys.
27
,
335
(
1992
).
This content is only available via PDF.
You do not currently have access to this content.