We present a scaling theory (ST) for the phase behavior of tethered polymers with lateral mobility in poor solvents. The coupling between inter‐ and intrachain interactions is included to describe the crossover between the ‘‘mushroom’’ and the layer regimes. The macroscopic phase separation and the associated changes in the chain configurations along the coexistence curve are obtained. The coupling between the thermodynamic state and the configurational behavior is described in detail. Good agreement between the ST and a molecular approach (single‐chain mean‐field theory) is obtained for the thermodynamic behavior and most of the conformational properties of the chains. Based on the ST, the renormalization group (RG) analysis is employed to derive the degree of polymerization, N, exponents in the critical amplitudes of the phase separation. It is found that some of the critical amplitudes have no N dependence, as expected in the semidilute regime, while others do show a dependence. These findings are in line with the fact that the critical region is in the crossover between the dilute and the semidilute regimes. The N exponents also differ from those for 2D polymer solutions, due to the fact that the thickness of the tethered chain layer has a power law dependence on N.

1.
A.
Halperin
,
M.
Tirrell
, and
T.
Lodge
,
Adv. Polym. Sci.
100
,
31
(
1991
).
2.
S. T.
Milner
,
Science
251
,
905
(
1991
).
3.
A.
Halperin
,
J. Phys. France
49
,
547
(
1988
).
4.
D. F. K.
Shim
and
M. E.
Cates
,
J. Phys. (Paris)
50
,
3535
(
1989
).
5.
E.
Zhulina
,
O.
Borisov
,
V.
Pryamitsyn
, and
T.
Birshtein
,
Macromolecules
24
,
140
(
1991
).
6.
P.
Auroy
, and
L.
Auvray
, and
L.
Leger
,
Phys. Rev. Lett.
66
,
719
(
1991
).
7.
M. A.
Carignano
and
I.
Szleifer
,
J. Chem. Phys.
100
,
3210
(
1994
).
8.
R. S.
Ross
and
P.
Pincus
,
Europhys. Lett.
19
,
79
(
1992
).
9.
P.-Y.
Lai
and
K.
Binder
,
J. Chem. Phys.
97
,
586
(
1992
).
10.
G. S.
Grest
and
M.
Murat
,
Macromolecules
26
,
3108
(
1993
).
11.
C.
Yeung
,
A. C.
Balazs
, and
D.
Jasnow
,
Macromolecules
26
,
1914
(
1993
).
12.
K.
Huang
and
A. C.
Balazs
,
Macromolecules
26
,
4736
(
1993
).
13.
D. R. M.
Williams
,
J. Phys. (Paris)
3
,
1313
(
1993
).
14.
H.
Tang
and
I.
Szleifer
,
Europhys. Lett.
28
,
19
(
1994
).
15.
Z.-G.
Wang
and
S. A.
Rice
,
J. Chem. Phys.
88
,
1290
(
1988
).
16.
R. S.
Cantor
and
P. M.
McIlroy
,
J. Chem. Phys.
90
,
4423
,
4431
(
1989
).
17.
S.
Shin
,
Z.-G.
Wang
, and
S. A.
Rice
,
J. Chem. Phys.
92
,
1427
(
1990
).
18.
M. A.
Carignano
and
I.
Szleifer
,
J. Chem. Phys.
98
,
5006
(
1993
).
19.
M. A. Carignano and I. Szleifer (to be published).
20.
See
C.
Williams
,
F.
Brochard
, and
H. L.
Frisch
,
Annu. Rev. Phys. Chem.
32
,
433
(
1981
), and references therein.
21.
See,
F.
Ganazzoli
,
G.
Allegra
,
E.
Colombo
, and
M. D.
Vitis
,
Makromol. Chem., Theory Simul.
1
,
299
(
1992
).
22.
A.
Ben-Shaul
,
I.
Szleifer
, and
W. M.
Gelbart
,
J. Chem. Phys.
83
,
3597
(
1985
), and references therein.
23.
M. A.
Carignano
and
I.
Szleifer
,
Macromolecules
27
,
702
(
1994
).
24.
P. Flory, Statistical Mechanics of Chain Molecules (Oxford University, New York, 1988).
25.
I.
Szleifer
,
E. M.
O’Toole
, and
A. Z.
Panagiotopoulos
,
J. Chem. Phys.
97
,
6802
(
1992
).
26.
See,
I. C.
Sanchez
,
J. Phys. Chem.
93
,
6983
(
1989
), and references therein.
27.
The limit p→−∞ should be understood as N≫1 but |τ|≪1, such that the local polymer volume fraction remains small, and the virial expansion is still valid. This is equivalent to the tricritical point in dilute polymer solutions, see e.g. Refs. 20 and 30.
28.
H. E. Stanley, Introduction to Phase Transitions and Critical Phenomena (Oxford University, New York, 1971).
29.
See, e.g.,
K. F.
Freed
and
M. K.
Kosmas
,
Phys. Rev. B
20
,
215
(
1979
).
30.
I.
Szleifer
and
B.
Widom
,
J. Chem. Phys.
90
,
7594
(
1989
).
31.
S.-K. Ma, Modern Theory of Critical Phenomena (Addison-Wesley, Redwood City, 1976).
32.
H. Tang and I. Szleifer (in preparation).
This content is only available via PDF.
You do not currently have access to this content.