This work represents the synthesis of the 2+1 pulse sequence for the study of electron spin‐echo envelope modulation (ESEEM) with the technique of spin‐echo correlated spectroscopy (SECSY), which has previously been used to study nuclear modulation by two‐dimensional Fourier transform ESR methods. This example of ‘‘pulse adjustable’’ spectroscopy, wherein the pulse width and pulse amplitude of the second pulse in a three pulse sequence are introduced as adjustable parameters, leads to enhanced resolution to the key features of the nuclear modulation that are important for structural studies. This is demonstrated in studies on (i) a single crystal of irradiated malonic acid and (ii) a frozen solution of diphenylpicrylhydrazyl in toluene. In particular, it is shown for (i) how the nuclear modulation cross peaks can be preferentially enhanced relative to the autopeaks and to the matrix proton peaks, and also how the autopeaks can be significantly suppressed to enhance resolution for low‐frequency cross peaks. For (ii) the low‐frequency 14N nuclear modulation could be suppressed leaving just the high‐frequency matrix 1H modulation. Additionally, the T2 homogeneous linewidth broadening in the f1 frequency direction is removed in 2+1 SECSY. These features significantly improve resolution to the modulation decay, which is the main observable utilized for distance measurements by ESEEM, compared to SECSY. A simple example of a distance measurement to matrix protons is presented for (ii). It is shown that a major advantage of the 2D format is that the full spin‐echo shape is collected, which permits one to study how the effect of the nuclear modulation upon the echo varies with evolution time t1 after the first pulse, and thereby to detect the important modulation features. Additionally it allows for correlating the modulation cross peaks in making spectral assignments. A detailed quantitative theory for 2+1 SECSY is also presented. In general, very good agreement between experiment and theoretical simulations is obtained.

1.
Modern Pulsed and Continuous-Wave Electron Spin Resonance, edited by L. Kevan and M. K. Bowman (Wiley, New York, 1990).
2.
S. A. Dikanov and Y. D. Tsvetkov, Electron Spin Echo Envelope Modulation (ESEEM) Spectroscopy (Chemical Rubber, Boca Raton, 1992).
3.
P.
Höfer
,
A.
Grupp
,
H.
Nebefüher
, and
M.
Mehring
,
Chem. Phys. Lett.
132
,
279
(
1986
).
4.
C.
Gemperle
,
G.
Aebi
,
A.
Schweiger
, and
R. R.
Ernst
,
J. Magn. Reson.
88
,
241
(
1990
).
5.
C.
Gemperle
,
A.
Schweiger
, and
R. R.
Ernst
,
Chem. Phys. Lett.
178
,
565
(
1991
).
6.
A.
Schweiger
,
C.
Gemperle
, and
R. R.
Ernst
,
J. Magn. Reson.
86
,
70
(
1990
).
7.
L.
Braunschweiler
,
A.
Schweiger
,
J. M.
Fauth
, and
R. R.
Ernst
,
J. Magn. Reson.
64
,
160
(
1985
).
8.
S.
Lee
,
B. R.
Patyal
, and
J. H.
Freed
,
J. Chem. Phys.
98
,
3665
(
1993
).
9.
J. H.
Freed
,
J. Chem. Soc. Faraday Trans.
86
,
3173
(
1990
).
10.
D.
Gamliel
and
J. H.
Freed
,
J. Magn. Reson.
89
,
60
(
1990
).
11.
B. R.
Patyal
,
R. H.
Crepeau
,
D.
Gamliel
, and
J. H.
Freed
,
Chem. Phys. Lett.
175
,
445
(
1990
).
12.
J. Gorcester, G. L. Millhauser, and J. H. Freed, in Advanced EPR, edited by A. J. Hoff (Elsevier, Amsterdam, 1989).
13.
V. V.
Kurshev
,
A. M.
Raitsimring
, and
Yu. D.
Tsvetkov
,
J. Magn. Reson.
81
,
441
(
1989
).
14.
M. K.
Bowman
,
Isr. J. Chem.
32
,
31
(
1992
).
15.
M. K. Bowman, R. J. Massoth, and C. S. Yannoni, in Pulsed Magnetic Resonance: NMR, ESR and Optics, edited by D. M. S. Bagguley (Claren don, Oxford, 1992).
16.
V. V.
Kurshev
,
A. V.
Astashkin
, and
A. M.
Raitsimring
,
Zh. Struct. Khim.
29
,
73
(
1988
)
[
V. V.
Kurshev
,
A. V.
Astashkin
, and
A. M.
Raitsimring
, Engl. trans.:
J. Struct. Chem.
29
,
62
(
1988
)].
17.
V. F.
Yudanov
,
A. M.
Raitsimring
, and
Yu. D.
Tsvetkov
,
Teor. Eksp. Khim.
4
,
520
(
1968
)
[
V. F.
Yudanov
,
A. M.
Raitsimring
, and
Yu. D.
Tsvetkov
,
Engl. trans.: Theor. Exp. Chem.
4
,
338
(
1968
)].
18.
H.
Thomann
and
M.
Bernardo
,
Spectrosc. Int. J.
8
,
119
(
1990
).
19.
H. M.
McConnell
,
C.
Heller
,
T.
Cole
, and
R. W.
Fessenden
,
J. Am. Chem. Soc.
82
,
766
(
1960
).
20.
W. B.
Mims
,
Phys. Rev. B
5
,
2409
(
1972
).
21.
W. B.
Mim
,
Phys. Rev. B
6
,
3543
(
1972
).
22.
We use S+ for notational convenience. More accurately it should be the associated magnetization operator, but following Mims we reserved M and M+ for other operators defined below.
23.
M. K. Bowman and R. J. Massoth, in Electronic Magnetic Resonance of the Solid State, edited by J. A. Weil (Canadian Society for Chemistry, Ottawa, 1987), p. 99.
24.
A.
Bloom
,
Phys. Rev.
98
,
1104
(
1955
).
25.
A. V.
Astashkin
,
S. A.
Dikanov
,
V. V.
Kurshev
, and
Yu. D.
Tsvetkov
,
Chem. Phys. Lett.
136
,
335
(
1987
).
26.
H.
Barkhuijsen
,
R.
de Beer
,
B. J.
Pronk
, and
D.
van Ormondt
,
J. Magn. Reson.
61
,
284
(
1985
).
27.
W. M. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes (Cambridge University, New York, 1987).
28.
J.
Gorcester
and
J. H.
Freed
,
J. Chem. Phys.
88
,
4678
(
1988
).
29.
J. Gorcester, G. L. Millhauser, and J. H. Freed, in Modern Pulse and Continuous Wave Electron Spin Resonance, edited by L. Kevan and M. K. Bowman (Wiley, New York, 1990).
30.
A. M.
Raitsimring
and
K. M.
Salikhov
,
Bull. Magn. Reson.
7
,
184
(
1985
).
31.
Note that in 2+1 SECSY the relaxation decay is rigorously independent of the time, t1. That is, to correct Eq. (10) for relaxation we would have to multiply it by the factor exp[−T2,e−1(2τ+t2)+T̃2,e−1tP2] where we recognize that this echo signal results from the spins that remain in the rotating x−y plane after the first pulse and are therefore subject to T2,e relaxation. We also allow for the possibility that there is a modified T2,e (given by 2,e) during the second pulse of duration tP2. The important point is that this factor is independent of t1.
32.
H. L.
Flanagan
,
G. J.
Gerfen
, and
D. J.
Singel
,
J. Chem. Phys.
88
,
20
(
1988
).
33.
V. V.
Kurshev
,
A. M.
Raitsimring
, and
K. M.
Salikhov
,
Sov. Phys. Solid State
30
,
139
(
1988
).
34.
D. A.
Narayana
,
D.
Suryanarayana
, and
L.
Kevan
,
J. Am. Chem. Soc.
104
,
3552
(
1982
).
35.
A. V.
Astashkin
,
S. A.
Dikanov
, and
Yu. D.
Tsvetkov
,
Chem. Phys. Lett.
144
,
258
(
1988
).
36.
Z.
Levi
,
A. M.
Raitsimring
, and
D.
Goldfarb
,
J. Phys. Chem.
95
,
7830
(
1990
).
37.
R. R. Ernst, G. Bodenhausen, and A. Wokaun, Principles of Nuclear Magnetic Resonance in One and Two Dimensions (Oxford, New York, 1987).
This content is only available via PDF.
You do not currently have access to this content.