We present the development of a new spectroscopic molecular mechanics potential for proteins. SPASIBA merges the torsional, van der Waals, electrostatic, and hydrogen bond potentials of AMBER with the Urey–Bradley–Shimanouchi terms for bond lengths and bond angles. To begin, SPASIBA was consistently parametrized to structural, energies, and vibrational frequency data of model compounds representative of the 16 nonaromatic acids: n‐alkanes, alcohols, acids, ethyl methyl sulfide, methyl sulfide in water, ethanethiol, dimethyl disulfide, guanidium ion, propionamide, N‐methylacetamide, N‐methylisobutyramide, and N‐isopropylacetamide. The parameters were then transferred to N‐acetyl‐X methylamides (where X=Gly, L‐Ala, L‐Pro), the L‐Leu, L‐Cys, and L‐Thr amino acids blocked by the carboxylate and ammonium ions, and the right‐handed deca‐alanine and Gly‐L‐Pro‐Gly‐Gly peptides. Results show that SPASIBA reproduces vibrational frequencies (with much higher accuracy than present molecular mechanics potentials), as well as potential energy distributions of normal modes. For the 532 fundamental frequencies considered for refining the force field, the mean frequency error is 13 cm−1. This force field, which can be incorporated in molecular dynamics simulations, is also found to provide useful insights into the conformation/vibrational spectrum relationships. This ability is illustrated on the Gly and L‐Ala dipeptides, as well as the polypeptides.

1.
Tripos 5.2 Force Field. SYBYL. Tripos Associates, Suite 303, 1699s Hanle Road, St Louis, MO. 63144, SYBYL 5.2.
2.
G.
Nemethy
,
M. S.
Pottle
, and
H. A.
Scheraga
,
J. Phys. Chem.
87
,
1883
(
1983
).
3.
W. F. Van Gunsteren and H. J. C. Berendsen, Groningen Molecular Simulation (GROMOS) Library Manual, Biomos, Groningen (1987).
4.
S. J.
Weiner
,
P. A.
Kollman
,
D. T.
Nguyen
, and
D. A.
Case
,
J. Comput. Chem.
7
,
230
(
1986
);
S. J.
Weiner
,
P. A.
Kollman
,
D. A.
Case
,
U. C.
Singh
,
C.
Ghio
,
S.
Profeta
, and
P.
Weiner
,
J. Am. Chem. Soc.
106
,
765
(
1984
).
5.
B. R.
Brooks
,
R. E.
Bruccoleri
,
B. D.
Olafson
,
D. J.
States
,
S.
Swaminathan
, and
M.
Karplus
,
J. Comput. Chem.
4
,
187
(
1983
).
6.
DISCOVER: Biosym Technologies Inc., 10065 Barnes Canyon Road Suite A, San Diego, CA 92121.
7.
S.
Lifson
and
P. S.
Stern
,
J. Chem. Phys.
77
,
4542
(
1981
).
8.
K.
Kildeby
,
S.
Melberg
, and
K.
Rasmussen
,
Acta Chem. Scand. A
31
,
1
(
1977
).
9.
J.
Lii
and
N. L.
Allinger
,
J. Comput. Chem.
12
,
186
(
1991
).
10.
T.
Shimanouchi
,
Pure Appl. Chem.
7
,
131
(
1963
).
11.
J. H.
Schachtschneider
and
R. G.
Snyder
,
Spectrochim. Acta
19
,
117
(
1963
).
12.
T.
Shimanouchi
and
I.
Suzuki
,
J. Mol. Spectrosc.
6
,
277
(
1961
).
13.
P.
Derreumaux
,
M.
Dauchez
, and
G.
Vergoten
,
J. Mol. Struct.
295
,
203
(
1993
).
14.
M.
Chhiba
,
P.
Derreumaux
, and
G.
Vergoten
,
J. Mol. Struct.
317
,
171
(
1994
).
15.
P.
Derreumaux
and
G.
Vergoten
,
J. Mol. Struct.
295
,
233
(
1993
).
16.
P.
Derreumaux
and
G.
Vergoten
,
J. Mol. Struct. (THEOCHEM)
105
,
55
(
1993
).
17.
H. C.
Urey
and
C. A.
Bradley
,
Phys. Rev.
38
,
1969
(
1931
).
18.
T.
Simanouti
,
J. Chem. Phys.
17
,
245
(
1949
).
19.
T.
Onishi
and
T.
Shimanouchi
,
Spectrochim. Acta
12
,
307
(
1964
).
20.
M.
Dauchez
,
P.
Derreumaux
, and
G.
Vergoten
,
J. Comput. Chem.
14
,
263
(
1993
).
21.
P.
Derreumaux
,
P.
Lagant
, and
G.
Vergoten
,
J. Mol. Struct.
295
,
222
(
1993
).
22.
T.
Simanouti
,
J. Chem. Phys.
17
,
848
(
1949
).
23.
B. M.
Pettitt
and
M.
Karplus
,
J. Am. Chem. Soc.
107
,
1166
(
1985
).
24.
P. Derreumaux and G. Vergoten (unpublished results).
25.
B.
Crawford
, Jr.
and
J.
Overend
,
J. Mol. Spectrosc.
12
,
307
(
1964
).
26.
Y.
Miwa
and
K.
Machida
,
J. Am. Chem. Soc.
110
,
5183
(
1988
).
27.
T.
Shimanouchi
,
Y.
Koyama
, and
K.
Itoh
,
Prog. Polym. Sci. Jpn.
7
,
273
(
1974
).
28.
F.
Fillaux
and
C.
De Loze
,
J. Chim. Phys.
39
,
547
(
1976
).
29.
S.
Ataka
,
H.
Takeuchi
, and
M.
Tasumi
,
J. Mol. Struct.
113
,
147
(
1984
).
30.
M.
Rey-Lafon
,
M. T.
Forel
, and
C.
Garrigou-Lagrange
,
Spectrochim. Acta Part A
29
,
471
(
1973
).
31.
N. G.
Mirkin
and
S.
Krimm
,
J. Mol. Struct.
242
,
143
(
1991
).
32.
M. J. Frisch, J. S. Binkley, H. B. Schlegel, K. Raghavachari, C. F. Melius, R. L. Martin, J. J. P. Stewart, F. W. Bobrowicz, C. M. Rohlfing, L. R. Kahn, D. J. Defrees, R. Seeger, R. A. Whiteside, D. J. Fox, E. M. Fleuder, and J. A. Pople, Carnegie-Mellon Quantum Chemistry Publishing, Pittsburgh, PA, 1984.
33.
M. J. S.
Dewar
,
E. G.
Zoebisch
,
E. F.
Healey
, and
J. J. P.
Stewart
,
J. Am. Chem. Soc.
107
,
3902
(
1985
).
34.
R. J.
Abraham
and
B.
Hudson
,
J. Comput. Chem.
6
,
173
(
1985
).
35.
T. F.
Koetzle
,
M. S.
Lehmann
,
J. J.
Verbist
, and
W. C.
Hamilton
,
Acta Crystallogr. Sect. B
28
,
3207
(
1972
).
36.
A.
Verma
,
W.
Murphy
, and
H.
Bernstein
,
J. Chem. Phys.
69
,
1540
(
1974
).
37.
H. D.
Stidham
and
J. R.
Durig
,
Spectrochim. Acta Part A
42
,
105
(
1986
).
38.
H. L.
Fang
and
R. L.
Swofford
,
Chem. Phys. Lett.
105
,
5
(
1984
).
39.
W. L.
Jorgensen
,
J. Chem. Phys.
90
,
1276
(
1986
).
40.
M.
Sakakibara
,
H.
Matsuura
,
I.
Harada
, and
T.
Shimanouchi
,
Bull. Chem. Soc. Jpn.
50
,
111
(
1977
).
41.
D.
Smith
,
J. P.
Devlin
, and
D. W.
Scott
,
J. Mol. Spectrosc.
25
,
174
(
1968
).
42.
J. R.
Durig
,
W. E.
Bucy
,
C. J.
Wurrey
, and
L. A.
Carreira
,
J. Phys. Chem.
79
,
988
(
1975
).
43.
W. N.
Hubbard
,
D. R.
Douslin
,
J. P.
McCullough
,
D. W.
Scott
,
S. S.
Todd
,
J. F.
Messerly
,
I. A.
Hossenlopp
,
A.
George
, and
G.
Waddington
,
J. Am. Chem. Soc.
80
,
3547
(
1958
).
44.
D.
Sutter
,
H.
Dreizler
, and
H. D.
Rudolph
,
Z. Naturforsch. Teil A
20
,
1676
(
1965
).
45.
J. L.
Katz
and
B.
Post
,
Acta Crystallogr.
13
,
264
(
1960
).
46.
M.
Kitano
,
T.
Fukuyama
, and
K.
Kuchitsu
,
Bull. Chem. Soc. Jpn.
46
,
384
(
1973
).
47.
P. Derreumaux, These, Universite Lille II (1988).
48.
T.
Drakenberg
and
S.
Forsen
,
J. Chem. Soc., Chem. Commun.
1971
,
1404
.
49.
D. M.
Schnur
,
Y. H.
Yuh
, and
D. R.
Dalton
,
J. Org. Chem.
54
,
3779
(
1989
).
50.
W. L.
Jorgensen
and
J.
Gao
,
J. Am. Chem. Soc.
110
,
4212
(
1988
).
51.
M.
Vasquez
,
G.
Nemethy
, and
H. A.
Scheraga
,
Macromolecules
16
,
1043
(
1983
).
52.
T.
Matsuzaki
and
Y.
Iitaka
,
Acta Crystallogr. Sect. B
27
,
507
(
1971
).
53.
Y.
Kuroda
,
Y.
Saito
,
K.
Machida
, and
T.
Uno
,
Bull. Chem. Soc. Jpn.
45
,
2371
(
1972
).
54.
C. L.
Angell
,
N.
Sheppard
,
A.
Yamaguchi
,
T.
Shimanouchi
,
T.
Miyazawa
, and
S.
Mizushima
,
Trans. Faraday Soc.
143
,
53
(
1957
).
55.
W.
Zhao
and
S.
Krimm
,
J. Mol. Struct.
224
,
7
(
1990
).
56.
S. G.
Frankin
,
J. Mol. Struct.
3
,
89
(
1969
).
57.
J. P.
Perchard
and
M. L.
Josien
,
J. Chim. Phys.
65
,
1834
(
1968
).
58.
Y.
Koyama
,
T.
Shimanouchi
,
M.
Sato
, and
T.
Tatsuno
,
Biopolymers
10
,
1059
(
1971
).
59.
I.
Suzuki
,
J. Chem. Phys.
35
,
540
(
1962
).
60.
M.
Avignon
,
C.
Garrigou-Lagrange
, and
P.
Bothorel
,
Biopolymers
12
,
1651
(
1973
).
61.
M.
Tsuboi
,
T.
Shimanouchi
, and
S.
Mizushima
,
J. Am. Chem. Soc.
81
,
1406
(
1959
).
62.
Y.
Koyama
and
T.
Shimanouchi
,
Biopolymers
6
,
1037
(
1968
).
63.
S.
Krimm
and
J.
Bandekar
,
J. Adv. Protein Chem.
38
,
181
(
1987
).
64.
T. C.
Cheam
and
S.
Krimm
,
J. Mol. Struct.
193
,
1
(
1989
).
65.
Y.
Abe
and
S.
Krimm
,
Biopolymers
11
,
1841
(
1972
).
66.
M. I.
Dakhis
,
V. G.
Dashevsky
, and
A. I.
Kitaigorodsky
,
Biopolymers
12
,
1763
(
1973
).
67.
V.
Madison
and
K. D.
Kopple
,
J. Am. Chem. Soc.
102
,
4855
(
1980
).
68.
G.
Ravishanker
,
M.
Mezei
, and
D. L.
Beveridge
,
J. Comput. Chem.
7
,
435
(
1986
).
69.
D. J.
Tobias
and
C. L.
Brooks
III
,
J. Phys. Chem.
96
,
3864
(
1992
).
70.
K.
Itoh
and
T.
Shimanouchi
,
Biopolymers
9
,
383
(
1970
).
71.
T. C.
Cheam
and
S.
Krimm
,
J. Mol. Struct. (THEOCHEM)
188
,
15
(
1989
).
72.
T. C.
Cheam
and
S.
Krimm
,
J. Mol. Struct. (THEOCHEM)
206
,
173
(
1990
).
73.
P. Legrand (unpublished results).
74.
V. M.
Naik
and
S.
Krimm
,
Int. J. Peptide Protein Res.
23
,
1
(
1984
).
75.
J. F.
Rabolt
,
W.
Wedding
, and
K. W.
Johnson
,
Biopolymers
14
,
1615
(
1975
).
76.
V. D.
Gupta
,
R. D.
Singh
, and
A. M.
Dwivedi
,
Biopolymers
12
,
1377
(
1973
).
77.
M.
Coll
,
X.
Silans
,
M.
Font-Altaba
, and
J. A.
Subirana
,
Acta Crystallogr. Sect. C
42
,
599
(
1986
).
78.
D. P.
Shoemaker
,
J.
Donohue
,
V.
Schomaker
, and
R. B.
Corey
,
Acta Crystallogr.
72
,
2328
(
1950
).
79.
K. A.
Kerr
,
J. P.
Ashmore
, and
T. F.
Koetzle
,
Acta Crystallogr. Sect. B
31
,
2022
(
1975
).
80.
L. Simons, G. Bergstrom, G. Blomfelt, S. Forss, H. Stenback, and G. Wansen, Commentationes Physico-Mathematicae, edited by Societas Scientiarum Fennica (1972), Vol. 42, p. 125.
81.
H.
Susi
,
M.
Byler
, and
W.
Gerasimowicz
,
J. Mol. Struct.
102
,
63
(
1983
).
82.
IUPAC-IUB Commission on Biochemical Nomenclature,
Biochemistry
9
,
3171
(
1970
).
83.
K.
Itoh
,
T.
Shimanouchi
, and
M.
Oya
,
Biopolymers
7
,
649
(
1969
).
84.
B.
Perly
,
N.
Helbecque
,
A.
Forchioni
, and
M. H.
Loucheux-Lefevre
,
Biopolymers
22
,
1853
(
1983
).
85.
C. M.
Venkatachalam
,
Biopolymers
6
,
1425
(
1968
).
86.
P.
Lagant
,
G.
Vergoten
,
G.
Fleury
, and
M. H.
Loucheux-Lefevre
,
Eur. J. Biochem.
139
,
137
(
1984
).
87.
J. R.
Maple
,
M.-J.
Hwang
,
T. P.
Stockfisch
,
U.
Dinur
,
M.
Waldam
,
C. S.
Ewig
, and
A. T.
Hagler
,
J. Comput. Chem.
15
,
162
(
1994
).
This content is only available via PDF.
You do not currently have access to this content.