The influence of the basis set size and the correlation energy in the static electrical properties of the CO molecule is assessed. In particular, we have studied both the nuclear relaxation and the vibrational contributions to the static molecular electrical properties, the vibrational Stark effect (VSE) and the vibrational intensity effect (VIE). From a mathematical point of view, when a static and uniform electric field is applied to a molecule, the energy of this system can be expressed in terms of a double power series with respect to the bond length and to the field strength. From the power series expansion of the potential energy, field‐dependent expressions for the equilibrium geometry, for the potential energy and for the force constant are obtained. The nuclear relaxation and vibrational contributions to the molecular electrical properties are analyzed in terms of the derivatives of the electronic molecular properties. In general, the results presented show that accurate inclusion of the correlation energy and large basis sets are needed to calculate the molecular electrical properties and their derivatives with respect to either nuclear displacements or/and field strength. With respect to experimental data, the calculated power series coefficients are overestimated by the SCF, CISD, and QCISD methods. On the contrary, perturbation methods (MP2 and MP4) tend to underestimate them. In average and using the 6‐311+G(3df) basis set and for the CO molecule, the nuclear relaxation and the vibrational contributions to the molecular electrical properties amount to 11.7%, 3.3%, and 69.7% of the purely electronic μ, α, and β values, respectively.

1.
D. P.
Shelton
and
J. E.
Rice
,
Chem. Rev.
94
,
3
(
1994
).
2.
D. R.
Kanis
,
M. A.
Ratner
, and
T. J.
Marks
,
Chem. Rev.
94
,
195
(
1994
).
3.
J. L.
Brédas
,
Science
263
,
487
(
1994
).
4.
M.
Duran
,
J. L.
Andrés
,
A.
Lledós
, and
J.
Bertrán
,
J. Chem. Phys.
90
,
328
(
1989
).
5.
J. L.
Andrés
,
A.
Lledós
,
M.
Duran
, and
J.
Bertrán
,
Chem. Phys. Lett.
153
,
82
(
1989
).
6.
J. L.
Andrés
,
M.
Duran
,
A.
Lledós
, and
J.
Bertrán
,
Chem. Phys.
151
,
37
(
1991
).
7.
J. L.
Andrés
,
J.
Martı
,
M.
Duran
,
A.
Lledós
, and
J.
Bertrán
,
J. Chem. Phys.
95
,
3521
(
1991
).
8.
J.
Martı
,
J. L.
Andrés
,
J.
Bertrán
, and
M.
Duran
,
Mol. Phys.
80
,
625
(
1993
).
9.
J. L.
Andrés
,
J.
Bertrán
,
M.
Duran
, and
J.
Martı
,
J. Phys. Chem.
98
,
2803
(
1994
).
10.
J. L.
Andrés
,
J.
Bertrán
,
M.
Duran
, and
J.
Martı
,
Int. J. Quantum Chem.
52
,
9
(
1994
).
11.
G.
Alagona
,
R.
Camini
,
C.
Ghio
, and
J.
Tomasi
,
Theor. Chim. Acta
85
,
167
(
1993
).
12.
M. J.
Cohen
,
A.
Willets
,
R. D.
Amos
, and
N. C.
Handy
,
J. Chem. Phys.
100
,
4467
(
1994
).
13.
D. K.
Lambert
and
R. G.
Tobin
,
Surf. Sci.
232
,
149
(
1990
).
14.
D. K.
Lambert
,
J. Chem. Phys.
94
,
6237
(
1991
).
15.
J. S.
Luo
,
R. G.
Tobin
,
D. K.
Lambert
,
G. B.
Fisher
, and
C. L.
DiMaggio
,
J. Chem. Phys.
99
,
1347
(
1993
).
16.
J. S.
Luo
,
R. G.
Tobin
, and
D. K.
Lambert
,
Chem. Phys. Lett.
204
,
445
(
1993
).
17.
J.
Martı
and
D. M.
Bishop
,
J. Chem. Phys.
99
,
3860
(
1993
).
18.
D.
Sundholm
,
P.
Pyykkö
, and
L.
Laaksonen
,
Mol. Phys.
56
,
1411
(
1985
).
19.
L.
Laaksonen
,
P.
Pyykkö
, and
D.
Sundholm
,
Comput. Phys. Rep.
4
,
313
(
1986
).
20.
G. E.
Scuseria
,
M. D.
Miller
,
F.
Jensen
, and
J.
Geertsen
,
J. Chem. Phys.
94
,
6660
(
1991
).
21.
L. A.
Barnes
,
B.
Liu
, and
R.
Lindh
,
J. Chem. Phys.
98
,
3972
(
1993
).
22.
M.
Ernzerhot
,
C. M.
Marian
, and
S. D.
Peyerimhoff
,
Chem. Phys. Lett.
204
,
59
(
1993
).
23.
C. W.
Bauschlicher
, Jr.
,
Chem. Phys. Lett.
118
,
307
(
1985
).
24.
K. K.
Sunil
and
K. D.
Jordan
,
Chem. Phys. Lett.
145
,
377
(
1988
).
25.
C. E.
Dyskstra
,
S.-Y.
Liu
, and
D. J.
Malik
,
Adv. Chem. Phys.
75
,
37
(
1989
).
26.
V.
Kellö
,
J.
Noga
,
G. H. F.
Dierksen
, and
A.
Sadlej
,
Chem. Phys. Lett.
152
,
387
(
1988
).
27.
H. J.
Werner
and
W.
Meyer
,
Mol. Phys.
31
,
855
(
1976
).
28.
K. P. Huber and G. Herzberg, Molecular Spectra and Molecular Structure. IV. Constants of Diatomic Molecules (Van Nostrand Rienhold, New York, 1979).
29.
J. M. Hollas, Modern Spectroscopy, 2nd ed. (Wiley, New York, 1992).
30.
J. S.
Muenter
,
J. Mol. Spectrosc.
55
,
490
(
1975
).
31.
E. A. Mason and E. W. McDaniel, Transport Properties of Ions in Gases (Wiley-Interscience, New York, 1988).
32.
J. F.
Ward
and
C. K.
Miller
,
Phys. Rev. A
19
,
826
(
1979
).
33.
C.
Chackerian
, Jr.
and
R. H.
Tipping
,
J. Mol. Spectrosc.
99
,
431
(
1983
).
34.
J. P.
Bouanich
,
N.
Van-Thanh
, and
I.
Rossi
,
J. Quantum Spectrosc. Radiat. Transfer
30
,
9
(
1983
).
35.
B.
Rosenblum
,
A. H.
Nethetcot
, Jr.
, and
C. H.
Townes
,
Phys. Rev.
109
,
400
(
1958
).
36.
T.
Yoshino
and
H. J.
Bernstein
,
J. Mol. Spectrosc.
2
,
213
(
1958
).
37.
B.
Fontal
and
T. G.
Spiro
,
Spectrochim. Acta A
33
,
507
(
1977
).
38.
R.
Aroca
,
E. A.
Robin
, and
T. A.
Ford
,
Spectrochim. Acta A
33
,
499
(
1977
).
39.
C.
Moller
and
M. S.
Plesset
,
Phys. Rev.
46
,
618
(
1934
).
40.
R.
Krishnan
,
M. J.
Frisch
, and
J. A.
Pople
,
J. Chem. Phys.
72
,
4244
(
1980
).
41.
J. A.
Pople
,
R.
Seeger
, and
R.
Krishnan
,
Int. J. Quantum. Chem. Symp.
11
,
149
(
1977
).
42.
J. A.
Pople
,
M.
Head-Gordon
, and
K.
Raghavachari
,
J. Chem. Phys.
87
,
5968
(
1987
).
43.
J. S.
Binkley
,
J. A.
Pople
, and
W. J.
Hehre
,
J. Am. Chem. Soc.
102
,
939
(
1980
).
44.
W. J.
Hehre
,
R.
Ditchfield
, and
J. A.
Pople
,
J. Chem. Phys.
56
,
2257
(
1972
).
45.
T.
Clark
,
J.
Chandrasekhar
,
G. W.
Spitznagel
, and
P. v. R.
Schleyer
,
J. Comp. Chem.
4
,
294
(
1983
).
46.
M. J.
Frisch
,
J. A.
Pople
, and
J. S.
Binkley
,
J. Chem. Phys.
80
,
3265
(
1984
).
47.
R.
Krishnan
,
J. S.
Binkley
,
R.
Seeger
, and
J. A.
Pople
,
J. Chem. Phys.
72
,
650
(
1980
).
48.
M. J. Frisch, G. W. Trucks, M. Head-Gordon, P. M. W. Gill, M. W. Wong, J. B. Foresman, B. G. Johnson, H. B. Schlegel, M. A. Robb, E. S. Replogle, R. Gomperts, J. L. Andrés, K. Raghavachari, J. S. Binkley, C. González, R. L. Martin, D. J. Fox, D. J. DeFrees, J. Baker, J. J. P. Stewart, and J. A. Pople, GAUSSIAN 92, Gaussian Inc., Pittsburgh, Pennsylvania, 1992.
49.
P. K. K.
Pandey
and
D. P.
Santry
,
J. Chem. Phys.
73
,
2899
(
1980
).
50.
C.
Castiglioni
,
M.
Gussoni
,
M.
Del Zoppo
, and
G.
Zerbi
,
Solid State Commun.
82
,
13
(
1992
).
51.
D.
Rinaldi
,
M. F.
Ruiz-López
,
M. T. C.
Martins Costa
, and
J. L.
Rivail
,
Chem. Phys. Lett.
128
,
177
(
1986
).
52.
D. M.
Bishop
and
B.
Kirtman
,
J. Chem. Phys.
95
,
2646
(
1991
);
D. M.
Bishop
and
B.
Kirtman
,
97
,
5255
(
1992
).,
J. Chem. Phys.
53.
B.
Champagne
,
E. A.
Perpète
, and
J.-M.
André
,
J. Chem. Phys.
101
,
10
796
(
1994
).
54.
L.
Adamowicz
and
R. J.
Bartlett
,
J. Chem. Phys.
84
,
4998
(
1986
);
L.
Adamowicz
and
R. J.
Bartlett
,
86
,
7250
(
1989
).,
J. Chem. Phys.
55.
E. B. Wilson Jr., J. C. Decius, and P. C. Cross, Molecular Vibrations. The Theory of Infrared and Raman Vibrational Spectra (Dover, New York, 1980).
This content is only available via PDF.
You do not currently have access to this content.