Benzene...carbon monoxide and benzene...formaldehyde complexes are studied using abinitio methods with the highest calculations at the MP4SDTQ/6–31+G**//MP2/6–31+G** level. The benzene...carbon monoxide dimer forms a π complex of Cs symmetry where the CO top is nearly parallel with the benzene plane. In the benzene...formaldehyde π complex the dimer is without any symmetry. In this arrangement a weak hydrogen bond is expected between the elements where benzene acts as the acceptor, while in a linear benzene...formaldehyde alignment benzene has been identified as a weak hydrogen bond donor to the carbonyl oxygen. Changes in the intramolecular geometric parameters upon dimerization are small. Interaction energy of the benzene...CO dimer seems to be underestimated compared to the experimental value. No experimental value has been found for the benzene...formaldehyde binding energy. The calculated value is more negative by 0.7 kcal/mol with reference to the benzene...CO dimer. Calculated intermolecular vibrational frequencies are in partial agreement with the experiment. The stretching frequency of the benzene...CO dimer is well reproduced, intermolecular bending and torsional frequencies are overestimated. The intramolecular vibrational frequencies for the monomers show over and underestimation in the high and low frequency ranges, respectively. Experimental results in the literature suggest an almost free internal rotation of the CO top above benzene. The calculated barrier to internal rotation is 0.01 kcal/mol in good agreement with the experimental value. Based on this theoretical value the model with the almost free internal rotation was supported. Analysis for the benzene...formaldehyde dimer suggests more hindered rotation, if at all, with a H2CO top.

1.
See, for example, (a) G. C. Pimentel and A. L. McClellan, The Hydrogen Bond (Freeman, San Francisco, 1960);
(b) R. D. Green, Hydrogen Bonding by C–H Groups (Wiley, New York, 1974);
(c) G. A. Jeffrey and W. Saenger, Hydrogen Bonding in Biological Structures (Springer, Berlin, 1991);
(d) Modeling the Hydrogen Bond, edited by D. A. Smith, ACS Symp. Series 569 (American Chemical Society, Washington, D.C., 1994).
2.
R.
Taylor
and
O.
Kennard
,
J. Am. Chem. Soc.
104
,
5063
(
1982
).
3.
G.
Alagona
,
C.
Ghio
,
P.
Nagy
,
K.
Simon
, and
G.
Naray-Szabo
,
J. Comput. Chem.
11
,
1038
(
1990
).
4.
(a)
P.
Camilleri
,
D. S.
Eggleston
,
H. S.
Rzepa
, and
M. L.
Webb
,
J. Chem. Soc. Chem. Commun.
1135
(
1994
);
(b)
V.
Agafonov
,
P.
Dubois
,
F.
Moussa
,
J. M.
Cense
, and
S.
Tosconi
,
J. Chem. Soc. Perkin Trans. 2
,
2007
(
1994
).
5.
(a)
J. J.
Novoa
,
B.
Tarron
,
M.-H.
Whangbo
, and
J. M.
Williams
,
J. Chem. Phys.
95
,
5179
(
1991
);
(b)
D. E.
Woon
,
P.
Zeng
, and
D. R.
Beck
,
J. Chem. Phys.
93
,
7808
(
1990
); ,
J. Chem. Phys.
(c)
M. M.
Szczesniak
,
G.
Chalasinski
,
S. M.
Cybulski
, and
P.
Cieplak
,
J. Chem. Phys.
98
,
3078
(
1993
).,
J. Chem. Phys.
6.
P. I.
Nagy
,
G. J.
Durant
, and
D. A.
Smith
,
J. Am. Chem. Soc.
115
,
2912
(
1993
).
7.
S. L.
Mayo
,
B. D.
Olafson
, and
W. A.
Goddard
III
,
J. Phys. Chem.
94
,
8897
(
1990
).
8.
D. A. Smith and C. W. Ulmer II (unpublished results).
9.
See, for examples (a)
A.
Wallqvist
,
J. Phys. Chem.
95
,
8921
(
1991
);
(b)
A.
Laaksonen
and
P.
Stilbs
,
Mol. Phys.
74
,
747
(
1991
);
(c)
N. T.
Skipper
,
Chem. Phys. Lett.
207
,
424
(
1993
);
(d)
D.
van Belle
and
S. J.
Wodak
,
J. Am. Chem. Soc.
115
,
647
(
1993
);
(e)
P.
Jungwirth
and
R.
Zahradnik
,
J. Phys. Chem.
98
,
1328
(
1994
), and references therein.
10.
G.
Alagona
and
A.
Tani
,
J. Mol. Struct. (THEOCHEM)
166
,
375
(
1988
);
P. I.
Nagy
,
W. J.
Dunn
III
,
G.
Alagona
, and
C.
Ghio
,
J. Am. Chem. Soc.
113
,
6719
(
1991
);
P. I.
Nagy
,
W. J.
Dunn
III
,
G.
Alagona
, and
C.
Ghio
,
114
,
4752
(
1992
).,
J. Am. Chem. Soc.
11.
W. L.
Jorgensen
and
D. L.
Severance
,
J. Am. Chem. Soc.
112
,
4768
(
1990
).
12.
P. I.
Nagy
,
W. J.
Dunn
III
,
G.
Alagona
, and
C.
Ghio
,
J. Phys. Chem.
97
,
4628
(
1993
).
13.
Handbook of Chemistry and Physics, 61st ed., edited by R. C. Weast (Chemical Rubber, Boca Raton, 1980–81).
14.
See, for example for CO complexes:
C. A.
Parish
,
J. D.
Augspurger
, and
C. E.
Dykstra
,
J. Phys. Chem.
96
,
2069
(
1992
), and references therein;
J.
Lundell
,
M.
Rásánen
, and
Z.
Latajka
,
J. Phys. Chem.
97
,
1152
(
1993
), and references therein; ,
J. Phys. Chem.
J.
Lundell
,
M.
Rásánen
, and
Z.
Latajka
,
Chem. Phys. Lett.
222
,
33
(
1994
);
F. J.
Lovas
,
S. P.
Belov
,
M. Y.
Tretyakov
,
J.
Ortigoso
, and
R. D.
Suenram
,
J. Mol. Spectrosc.
167
,
191
(
1994
).
15.
See, for example, for hydrogen bonds to a carbonyl group:
R. A.
Kumpf
and
J. R.
Damewood
,Jr.
,
J. Phys. Chem.
93
,
4478
(
1989
);
T.-K.
Ha
,
J.
Makarewicz
, and
A.
Bauder
,
J. Phys. Chem.
97
,
11415
(
1993
); ,
J. Phys. Chem.
Y.
Dimitrova
and
S. D.
Peyerimhoff
,
J. Phys. Chem.
97
,
12731
(
1993
); ,
J. Phys. Chem.
A.
Engdahl
,
Chem. Phys.
178
,
305
(
1993
);
S.
Ten-no
,
F.
Hirata
, and
S.
Kato
,
Chem. Phys. Lett.
214
,
391
(
1993
);
T. A.
Ramelot
,
C.-H.
Hu
,
J. E.
Fowler
,
B. J.
DeLeeuw
, and
H. F.
Schaefer
III
,
J. Chem. Phys.
100
,
4347
(
1994
).
16.
For a review see, for example,
M.
Nishio
and
M.
Hirota
,
Tetrahedron
45
,
7201
(
1989
), and references therein.
17.
S.
Suzuki
,
P. G.
Green
,
R. E.
Bumgarner
,
S.
Dasgupta
,
W. A.
Goddard
III
, and
G. A.
Blake
,
Science
257
,
942
(
1992
);
J. D.
Augspurger
,
C. E.
Dykstra
, and
T. S.
Zwier
,
J. Phys. Chem.
97
,
980
(
1993
).
18.
K. S.
Kim
,
J. Y.
Lee
,
S. J.
Lee
,
T.-K.
Ha
, and
D. H.
Kim
,
J. Am. Chem. Soc.
116
,
7399
(
1994
).
19.
(a)
R. F.
Lin
,
G. S.
Blackman
,
M. A.
VanHove
, and
G. A.
Somorjai
,
Acta Crystallogr. Sect. B
43
,
368
(
1987
);
(b)
M. A.
VanHove
and
G. A.
Somorjai
,
J. Am. Chem. Soc.
108
,
2532
(
1986
);
(c)
R.
Elber
and
M.
Karplus
,
J. Am. Chem. Soc.
112
,
9161
(
1990
).,
J. Am. Chem. Soc.
20.
Th.
Brupbacher
and
A.
Bauder
,
J. Chem. Phys.
99
,
9394
(
1993
).
21.
R.
Nowak
,
J. A.
Menapace
, and
E. R.
Bernstein
,
J. Chem. Phys.
89
,
1309
(
1988
).
22.
P.
Hobza
,
O.
Bludsky
,
H. L.
Selzle
, and
E. W.
Schlag
,
J. Chem. Phys.
98
,
6223
(
1993
).
23.
R. P.
Bettens
,
S. R.
Huber
, and
A.
Bauder
,
J. Phys. Chem.
98
,
4551
(
1994
).
24.
GAUSSIAN 92, Revision A, M. J. Frisch, G. W. Trucks, M. Head-Gordon, P. M. W. Gill, M. W. Wong, J. B. Foresman, B. G. Johnson, H. B. Schlegel, M. A. Robb, E. S. Replogle, R. Gomperts, J. L. Andres, K. Raghavachari, J. S. Binkley, C. Gonzalez, R. L. Martin, D. J. Fox, D. J. Defrees, J. Baker, J. J. P. Stewart, and J. A. Pople (Gaussian Inc., Pittsburgh, 1992).
25.
J.
Del Bene
,
J. Chem. Phys.
86
,
2110
(
1987
);
J.
Del Bene
,
J. Comput. Chem.
10
,
603
(
1989
).
26.
J. A.
Pople
,
M.
Head-Gordon
, and
K.
Raghavachari
,
J. Chem. Phys.
87
,
5968
(
1987
).
27.
R.
Krishnan
and
J. A.
Pople
,
Int. J. Quantum Chem.
14
,
91
(
1978
);
R.
Krishnan
,
M. J.
Frisch
, and
J. A.
Pople
,
J. Chem. Phys.
72
,
4244
(
1980
).
28.
S. F.
Boys
and
F.
Bernardi
,
Mol. Phys.
19
,
553
(
1970
).
29.
P. I.
Nagy
,
D. A.
Smith
,
G.
Alagona
, and
C.
Ghio
,
J. Phys. Chem.
98
,
486
(
1994
). Equation 3 in this publication was printed in error and is corrected here.
30.
L.
Goodman
,
A. G.
Ozkabak
, and
S. N.
Thakur
,
J. Phys. Chem.
95
,
9044
(
1991
).
31.
N. C.
Handy
,
P. E.
Maslen
,
R. D.
Amos
,
J. S.
Andrews
,
C. W.
Murry
, and
G. J.
Laming
,
Chem. Phys. Lett.
197
,
506
(
1992
).
32.
J. E.
Kilpatrick
and
K. S.
Pitzer
,
J. Chem. Phys.
17
,
1064
(
1949
).
33.
E. A. Mason and E. W. McDaniel, Transport Properties of Ions in Gases (Wiley-Interscience, New York, 1988).
34.
G. E.
Scuseria
,
M. D.
Miller
,
F.
Jesen
, and
J.
Geertsen
,
J. Chem. Phys.
94
,
6660
(
1991
);
S. T.
Grice
,
P. W.
Harland
, and
R. G. A. R.
Maclagan
,
J. Chem. Phys.
99
,
7619
(
1993
).,
J. Chem. Phys.
35.
W. J. Hehre, L. Radom, P. v. R. Schleyer, and J. A. Pople, Ab Initio Molecular Orbital Theory (Wiley, New York, 1986).
36.
A.
Gavezzotti
,
J. Am. Chem. Soc.
105
,
5220
(
1983
).
37.
L. G.
Vanquickenborne
,
B.
Coussens
,
C.
Verlinde
, and
C.
De Ranter
,
J. Mol. Struct. (THEOCHEM)
201
,
1
(
1989
).
38.
(a)
J.
Pranata
and
W. L.
Jorgensen
,
J. Am. Chem. Soc.
113
,
9483
(
1991
);
(b)
J.
Kroon
,
L. M. J.
Kroon-Batenburg
,
B. R.
Leeflang
, and
J. F. G.
Vliegenhart
,
J. Mol. Struct. (THEOCHEM)
322
,
27
(
1994
).
39.
B.
Ernstberger
,
H.
Krause
, and
H. J.
Neusser
,
Z. Phys. D
20
,
189
(
1991
).
40.
For a recent overview of the problem, see, for example,
E. R.
Davidson
and
S. J.
Chakravorty
,
Chem. Phys. Lett.
217
,
48
(
1994
), and references therein.
41.
M. J.
Frisch
,
J.
Del Bene
,
J. S.
Binkley
, and
H. F.
Scaeffer
III
,
J. Chem. Phys.
84
,
2279
(
1986
).
42.
R. F.
Hout
, Jr.
,
B. A.
Levi
, and
W. J.
Hehre
,
J. Comput. Chem.
3
,
234
(
1982
).
43.
J. L.
Duncan
and
P. D.
Mallinson
,
Chem. Phys. Lett.
23
,
597
(
1973
).
44.
(a) D. McQuerrie, Statistical Mechanics (Harper and Row, New York, 1976);
(b) D. R. Stull and H. Prophet, JANAF Thermochem. Tables (NSRDS-NBS, 1971).
45.
K.
Ohno
and
H.
Shinohara
,
J. Phys. Chem.
98
,
10063
(
1994
).
46.
Y.
Miwa
,
N.
Mimura
,
K.
Machida
,
T.
Nakagawa
,
J.
Umemura
, and
S.
Hayashi
,
Spectrochim. Acta A
50
,
1629
(
1994
).
47.
D. R. Stull, E. F. Westrum, Jr., and G. C. Sinke, The Chemical Thermodynamics of Organic Compounds, 2nd ed. (Chapman & Hall, London, 1969).
48.
(a)
P.
Nagy
,
J. Mol. Struct. (THEOCHEM)
202
,
271
(
1989
);
(b)
D.
Peeters
,
J. Mol. Struct.
322
,
9
(
1994
);
(c)
V.
Hannachi
and
B.
Silvi
,
J. Mol. Struct. (THEOCHEM)
200
,
483
(
1989
);
(d)
M. W.
Jurema
and
G. C.
Shields
,
J. Comput. Chem.
14
,
89
(
1993
).
This content is only available via PDF.
You do not currently have access to this content.