We compare and contrast the low and high resolution S1S0 fluorescence excitation spectra of four van der Waals complexes, Ar–1FN, CH4–1FN, Ar–2FN, and CH4–2FN (where 1FN and 2FN are 1‐ and 2‐fluoronaphthalene, respectively) in the gas phase. Whereas the Ar and CH4 complexes exhibit comparable low resolution spectra, their high resolution spectra are significantly different. The CH4–1/2FN complexes exhibit origin bands that are each split into three distinct subbands with different intensities and separations of less than 1 cm−1. No such splittings are observed in Ar–1/2FN. The relative intensities of the three subbands in both CH4 complexes are 1:2:2. These are identical, within experimental error, to the total statistical weights of the J=0, 1, and 2 rotational levels of CH4. Both Ar and CH4 are weakly attached to 1/2FN at a distance of ∼3.5 Å above the aromatic plane. This distance decreases slightly (∼0.1 Å) on S1S0 excitation. Thus, the splittings observed in CH4–1/2FN are attributed to ‘‘surface‐induced’’ perturbations of the normally isotropic rotational motion of methane whose magnitudes depend on the electronic structure of the surface to which it is attached. A model is proposed that accounts for these observations. Comparison of the numerical predictions of this model with the experimental results shows that the rotational motion of the attached CH4 is nearly the same as that of the free molecule.

1.
R. E.
Smalley
,
L.
Wharton
,
D. H.
Levy
, and
D. W.
Chandler
,
J. Chem. Phys.
68
,
2487
(
1978
).
2.
For reviews, see
J. M.
Hutson
,
Annu. Rev. Phys. Chem.
41
,
123
(
1990
);
R. C.
Cohen
and
R. J.
Saykally
,
Annu. Rev. Phys. Chem.
42
,
369
(
1991
).,
Annu. Rev. Phys. Chem.
3.
J. O. Hirschfelder, C. F. Curtiss, and R. B. Bird, Molecular Theory of Gases and Liquids (Wiley, New York, 1965).
4.
W. A. Majewski, J. F. Pfanstiel, D. F. Plusquellic, and D. W. Pratt, in Laser Techniques in Chemistry, edited by T. Rizzo and A. D. Myers (Wiley, New York, 1995).
5.
W. A.
Majewski
,
D. F.
Plusquellic
, and
D. W.
Pratt
,
J. Chem. Phys.
90
,
1362
(
1989
).
6.
J. R.
Johnson
,
K. D.
Jordan
,
D. F.
Plusquellic
, and
D. W.
Pratt
,
J. Chem. Phys.
93
,
2258
(
1990
).
7.
B. B. Champagne, Ph.D. thesis, University of Pittsburgh, 1994.
8.
J. K. G. Watson, in Vibrational Spectra and Structure, edited by J. R. Durig (Elsevier, Amsterdam, 1977), Vol. 6, p. 1, and references therein.
9.
W. Gordy and R. L. Cook, Microwave Molecular Spectra, 3rd ed. (Wiley-Interscience, New York, 1984).
10.
See, for example,
Th.
Weber
and
H. J.
Neusser
,
J. Chem. Phys.
94
,
7689
(
1991
), and references therein.
11.
J.
Kraitchman
,
Am. J. Phys.
21
,
17
(
1953
).
12.
B. B.
Champagne
,
D. F.
Plusquellic
,
J. F.
Pfanstiel
,
W. M.
van Herpen
, and
W. L.
Meerts
,
Chem. Phys.
156
,
251
(
1991
).
13.
M.
Mandziuk
and
Z.
Bačić
,
J. Chem. Phys.
98
,
7165
(
1993
), and references therein.
14.
M. J. Frisch, M. Head-Gordon, G. W. Trucks, J. B. Foresman, H. B. Schlegel, K. Raghavachari, M. A. Robb, J. S. Binkley, C. Gonzalez, D. J. Defrees, D. J. Fox, R. A. Whiteside, R. Seeger, C. F. Melius, J. Baker, R. L. Martin, L. R. Kahn, J. J. P. Stewart, S. Topiol, and J. A. Pople, GAUSSIAN 90, Gaussian, Inc., Pittsburgh, Pennsylvania, 1990.
15.
T.
Troxler
and
S.
Leutwyler
,
J. Chem. Phys.
95
,
4010
(
1991
).
16.
D. O.
DeHaan
and
T. S.
Zwier
,
J. Chem. Phys.
90
,
1460
(
1989
).
17.
K.
Yamanouchi
,
S.
Isogai
, and
S.
Tsuchiya
,
J. Mol. Struct.
146
,
349
(
1986
);
B.
Coutant
and
P.
Brechignac
,
J. Chem. Phys.
91
,
1978
(
1989
).
18.
S. A.
Wittmeyer
,
T.
Troxler
, and
M. R.
Topp
,
J. Phys. Chem.
97
,
10
613
(
1993
).
19.
G. Herzberg, Electronic Spectra of Polyatomic Molecules (van Nostrand, Princeton, 1966).
20.
E. B.
Wilson
, Jr.
,
J. Chem. Phys.
3
,
276
(
1935
).
21.
Y.
Oshima
and
Y.
Endo
,
J. Chem. Phys.
93
,
6256
(
1990
).
22.
L.
Dore
et al.,
J. Chem. Phys.
100
,
863
(
1994
);
R. D.
Suenram
,
G. T.
Fraser
,
F. J.
Lovas
, and
Y.
Kawashima
,
J. Chem. Phys.
101
,
7230
(
1994
).
23.
R. W.
Randall
,
J. B.
Ibbotson
, and
B. J.
Howard
,
J. Chem. Phys.
100
,
7051
(
1994
).
24.
See, for example,
V.
Buch
and
J. P.
Devlin
,
J. Chem. Phys.
98
,
4195
(
1993
), and references therein.
25.
R. N. Zare, Angular Momentum (Wiley-Interscience, New York, 1988).
26.
W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes in C (Cambridge University, Cambridge, 1988).
27.
D.
Consalvo
,
A.
van der Avoird
,
S.
Piccirillo
,
M.
Coreno
,
A.
Giardini-Guidoni
,
A.
Mele
, and
M.
Snels
,
J. Chem. Phys.
99
,
8398
(
1993
).
28.
A. J.
Gotch
and
T. S.
Zwier
,
J. Chem. Phys.
96
,
3388
(
1992
).
29.
J. D.
Augspurger
,
C. E.
Dykstra
, and
T. S.
Zwier
,
J. Phys. Chem.
96
,
7252
(
1992
).
30.
S.
Suzuki
,
P. G.
Green
,
R. E.
Baumgarner
,
S.
Dasgupta
,
W. A.
Goddard
, III
, and
G. A.
Blake
,
Science
257
,
942
(
1992
).
31.
H. S.
Gutowsky
,
T.
Emilsson
, and
E.
Arunan
,
J. Chem. Phys.
99
,
4883
(
1993
).
32.
N.
Sheppard
and
D. J. C.
Yates
,
Proc. R. Soc. Ser. A
238
,
69
(
1956
).
33.
I. J.
Malik
,
M. E.
Brubaker
,
S. B.
Mohsin
, and
M.
Trenary
,
J. Chem. Phys.
87
,
5554
(
1987
).
34.
T. P.
Beebe
, Jr.
,
J. E.
Crowell
, and
J. T.
Yates
, Jr.
,
J. Chem. Phys.
92
,
5119
(
1990
).
35.
J. Z.
Larese
,
J. M.
Hastings
,
L.
Passell
,
D.
Smith
, and
D.
Richter
,
J. Chem. Phys.
95
,
6997
(
1991
).
36.
M. V.
Smalley
et al.,
Mol. Phys.
44
,
533
(
1981
).
37.
C. M.
Lovejoy
,
D. D.
Nelson
, and
D. J.
Nesbitt
,
J. Chem. Phys.
87
,
5621
(
1987
);
C. M.
Lovejoy
,
D. D.
Nelson
, and
D. J.
Nesbitt
,
89
,
7180
(
1988
).,
J. Chem. Phys.
38.
L. H. Spangler and D. W. Pratt, in Jet Spectroscopy and Molecular Dynamics, edited by J. M. Hollas and D. Phillips (Chapman and Hall, London, 1995).
39.
X.-Q.
Tan
,
W. A.
Majewski
,
D. F.
Plusquellic
, and
D. W.
Pratt
,
J. Chem. Phys.
94
,
7721
(
1991
).
This content is only available via PDF.
You do not currently have access to this content.