A new method, which improves upon the mean spherical approximation (MSA), is developed by including the ionic‐pairing contribution using a recent theory of association. The association constant of the new approximation is obtained through the second ionic virial coefficient. In the simplest version of our theory, which we call the pairing MSA 1 (PMSA1), we neglect the activity coefficient of the fully associated ionic‐pairs, which are regarded as a separate dipolar species, and obtain the critical point (ρc*, Tc*) at (0.025, 0.075). In the second PMSA ( or PMSA2), we include the activity coefficient of these dipolar particles at the MSA level. The new critical point is located at (0.023, 0.073). In the third PMSA ( or PMSA3), we further include the effect of the presence of the dipolar‐particle cores. The final critical point is located at (0.0245, 0.0745). These critical points are considerably closer than the MSA result (0.014, 0.079) to the most recent Monte Carlo estimates of ρc* from 0.025 to 0.04 and Tc* from 0.053 to somewhat over 0.057. Both PMSA2 and PMSA3 appear to improve the critical values of pressure and the degree of association significantly over PMSA1. All expressions for the thermodynamic properties in the PMSA1, PMSA2, and PMSA3 are of simple analytic form. The equation of state in the PMSA3 reduces to the very accurate Carnahan‐Starling equation of state for hard spheres if the charges are turned off, and it reduces to an accurate equation of state for a mixture of hard spheres and hard dumbbells if the charges of the associated pairs are turned off. A comparison is made between our theory and that of a recent approach of Fisher and Levin, which is in good agreement with the simulation results if the hard‐core contribution to the thermodynamics is neglected, but which falls out of agreement when an accurate core contribution is included. A discussion of the importance of an accurate core term in the treatment of the restrictive primitive model is given. Finally, the most likely reasons that the Tc* predicted by the PMSA is somewhat too high are briefly noted.

1.
(a)
J. P.
Valleau
,
J. Chem. Phys.
95
,
584
(
1991
);
I. S.
Graham
and
J. P.
Valleau
,
J. Phys. Chem.
94
,
7894
(
1990
);
(b)
A. Z.
Panagiotopoulos
,
Fluid Phase Equilib.
76
,
97
(
1992
);
(c)
J. M.
Caillol
,
J. Chem. Phys.
100
,
2161
(
1994
);
(d)
G.
Orkoulas
and
A. Z.
Panagiotopoulos
,
J. Chem. Phys.
101
,
1452
(
1994
).,
J. Chem. Phys.
2.
Recent reviews (a)
K. S.
Pitzer
,
Acc. Chem. Res.
23
,
333
(
1990
);
(b)
J. M. J.
Levelt-Sengers
and
J. A.
Given
,
Mol. Phys.
80
,
899
(
1993
);
(c) M. E. Fisher, J. Stat. Phys. (in press);
(d) G. Stell, J. Stat. Phys. (in press);
(e) For a recent work, also see,
L. B.
Bhuiyan
,
C. W.
Outhwaite
,
M.
Molero
, and
E.
González-Tovar
,
J. Chem. Phys.
100
,
8301
(
1994
).
3.
E.
Waisman
and
J. L.
Lebowitz
,
J. Chem. Phys.
56
,
3086
,
3093
(
1972
).
4.
(a)
G.
Stell
,
K. C.
Wu
, and
B.
Larsen
,
Phys. Rev. Lett.
37
,
1369
(
1976
);
(b)
G.
Stell
and
B.
Larsen
,
J. Chem. Phys.
70
,
361
(
1979
);
(c)
B.
Larsen
,
G.
Stell
, and
K. C.
Wu
,
J. Chem. Phys.
67
,
530
(
1977
); ,
J. Chem. Phys.
(d) B. Hafskjold and G. Stell, in Studies in Statistical Mechanics, edited by E. W. Montroll and J. L. Lebowitz (North-Holland, Amsterdam, 1982), Vol. VIII.
5.
(a)
W.
Ebeling
and
M.
Grigo
,
Am. Phys.
37
,
21
(
1980
);
(b)
W.
Ebeling
and
M.
Grigo
,
J. Sol. Chem.
11
,
151
(
1982
).
6.
For example, H. L. Friedman, Ionic Solution Theory (Interscience, New York, 1972).
7.
N.
Bjerrum
,
Kgl. Dan. Vidensk. Selsk. Mat.-fys. Medd.
7
,
1
(
1926
).
8.
Y.
Zhou
and
G.
Stell
,
J. Chem. Phys.
96
,
1504
(
1992
);
Y.
Zhou
and
G.
Stell
,
96
,
1507
(
1992
); ,
J. Chem. Phys.
Y.
Zhou
and
G.
Stell
,
Fluid Phase Equilib.
79
,
1
(
1992
).
9.
W.
Ebeling
,
Z. Phys. Chem.
247
,
340
(
1971
).
10.
M. E.
Fisher
and
Y.
Levin
,
Phys. Rev. Lett.
71
,
3826
(
1993
).
11.
H. L.
Friedman
and
B.
Larsen
,
J. Chem. Phys.
70
,
92
(
1979
).
12.
(a)
M. C.
Justice
and
J. C.
Justice
,
J. Sol. Chem.
5
,
543
(
1976
),
M. C.
Justice
and
J. C.
Justice
,
6
,
819
(
1977
); ,
J. Solution Chem.
(b)
H.
Yokoyama
and
H.
Yamatera
,
Bull. Chem. Soc. Jpn.
48
,
1770
(
1975
);
(c) See the review articles of Ref. 2 for a complete list of papers using the Bjerrum association theory.
13.
D.
Chandler
and
L. R.
Pratt
,
J. Chem. Phys.
65
,
2925
(
1976
).
14.
M. S.
Wertheim
,
J. Chem. Phys.
85
,
2929
(
1986
);
M. S.
Wertheim
,
87
,
7323
(
1987
); ,
J. Chem. Phys.
M. S.
Wertheim
,
J. Stat. Phys.
35
,
19
,
35
(
1984
);
M. S.
Wertheim
,
42
,
459
,
477
(
1986
).,
J. Stat. Phys.
15.
G.
Stell and Y Zhou
,
J. Chem. Phys.
91
,
3618
(
1989
).
16.
G.
Stell
,
Condensed Matter Phys., Acad. Sci. Ukraine
2
,
4
(
1993
);
P. T.
Cummings
and
G.
Stell
,
Mol. Phys.
51
,
253
(
1984
);
P. T.
Cummings
and
G.
Stell
,
55
,
33
(
1985
); ,
Mol. Phys.
P. T.
Cummings
and
G.
Stell
,
62
,
65
(
1987
).,
Mol. Phys.
17.
Y.
Zhou
and
G.
Stell
,
J. Chem. Phys.
102
,
5796
(
1995
).
18.
N. F.
Carnahan
and
K. E.
Starling
,
J. Chem. Phys.
51
,
635
(
1969
).
19.
E.
Haga
,
J. Phys. Soc. Jpn.
8
,
714
(
1953
).
20.
Y.
Zhou
,
H. L.
Friedman
, and
G.
Stell
,
J. Chem. Phys.
91
,
4879
(
1989
).
21.
H. C.
Andersen
and
D.
Chandler
,
J. Chem Phys.
57
,
1918
(
1972
);
D.
Chandler
and
H. C.
Andersen
,
J. Chem Phys.
57
,
1930
(
1972
); ,
J. Chem. Phys.
H. C.
Andersen
,
D.
Chandler
, and
J. D.
Weeks
,
J. Chem Phys.
57
,
2626
(
1972
).,
J. Chem. Phys.
22.
This expression is carefully derived based on the four references listed below: (a)
L.
Blum
and
D. Q.
Wei
,
J. Chem. Phys.
87
,
555
(
1987
);
(b)
L.
Blum
and
W. R.
Fawcett
,
J. Phys. Chem.
96
,
408
(
1992
);
(c)
D.
Wei
and
L.
Blum
,
J. Phys. Chem.
91
,
4342
(
1987
); ,
J. Phys. Chem.
(d)
J. S.
Ho/ye
and
E.
Lomba
,
J. Chem. Phys.
88
,
5790
(
1988
).
23.
To our knowledge, the expression of the second ion-dipole virial coefficient has not appeared in the literature. We have obtained the expression in work that will appear in a subsequent paper.
24.
The MSA gij(r) reduces to the Percus-Yevick hard-sphere gij(r) for zero charge strength. However, in computing the thermodynamics from the internal energy integral over the gij(r), one has freedom to use whatever hard-sphere contribution one chooses. The contribution computed from the PY virial equation is one natural choice. That was used in Ref 4(a) and subsequently in
M.
Medina-Noyola
and
D. A.
McQuarrie
,
J. Stat. Phys.
18
,
445
(
1978
).
25.
V.
McGahay
and
M.
Tomozawa
,
J. NonCryst. Solids
109
,
27
(
1989
).
26.
L.
Belloni
,
J. Chem. Phys.
98
,
8080
(
1993
);
J. S.
Ho/ye
,
E.
Lomba
, and
G.
Stell
,
Mol. Phys.
79
,
523
(
1993
).
27.
V.
McGahay
and
M.
Tomozawa
,
J. Chem. Phys.
97
,
2609
(
1992
).
28.
Y. Guissani and B. Guillot (private communication).
29.
G. A.
Mansoori
,
N. F.
Carnahan
,
K. E.
Starling
, and
T. W.
Leland
, Jr.
,
J. Chem. Phys.
54
,
1523
(
1971
).
30.
A FORTRAN program has been obtained from B. Tooker, Ph.D. thesis, State University of New York at Stony Brook, August, 1993.
31.
K. S.
Pitzer
and
D. R.
Schreiber
,
Mol. Phys.
60
,
1067
(
1987
).
32.
D.
Laría
,
H. R.
Corti
, and
R.
Fernández-Prini
,
J. Chem. Soc. Faraday Trans.
86
,
1051
(
1990
).
33.
F.
Bresme
,
E.
Lomba
,
J. J.
Weis
, and
J. L. F.
Abascal
,
Phys. Rev. E
51
,
289
(
1995
).
34.
It should be noted however our definition of clusters is much narrower than that of Refs. 31–33, and the treatment different, making comparison difficult.
35.
J. A.
Baker
and
D.
Henderson
,
J. Chem. Phys.
47
,
4714
(
1967
).
36.
Q. Zhang and G. Stell (to be published).
37.
Y.
Guissani
and
B.
Guillot
,
J. Chem. Phys.
101
,
500
(
1994
).
This content is only available via PDF.
You do not currently have access to this content.