A previous trajectory study of the dissociation of Cl...CH3Cl complexes formed by Cl+CH3Cl association is further analyzed to determine (1) the relationship between classical and quantum Rice–Ramsperger–Kassel–Marcus (RRKM) rate constants for Cl...CH3Cl→Cl+CH3Cl dissociation; (2) the importance of anharmonicity in calculating the RRKM dissociation rate constant; (3) the role of angular momentum in interpreting the trajectory distribution N(t)/N(0) of Cl...CH3Cl complexes versus time; and (4) the pressure‐dependent collision‐averaged rate constant k(ω,E) for Cl...CH3Cl dissociation. It is found that only the low‐frequency intermolecular modes of Cl...CH3Cl are initially excited by Cl+CH3Cl association. Classical and quantum RRKM rate constants for dissociation of this intermolecular complex are in excellent agreement. Anharmonicity lowers the rate constant by a factor of 4–8 from its harmonic value. The dissociation rate for the long‐time tail of the trajectory N(t)/N(0) distribution is much smaller than predicted by a RRKM model, which accurately treats angular momentum. It is suggested that the long‐lived trajectories may arise from motion on vague tori. The trajectory collision‐averaged rate constant k(ω,E) is in agreement with an experimental study at 300 K.

1.
J. I.
Brauman
,
W. N.
Olmstead
, and
C. A.
Lieder
,
J. Am. Chem. Soc.
96
,
4030
(
1974
).
2.
W. N.
Olmstead
and
J. I.
Brauman
,
J. Am. Chem. Soc.
99
,
4219
(
1977
).
3.
O. I.
Asubiojo
and
J. I.
Brauman
,
J. Am. Chem. Soc.
101
,
3715
(
1979
).
4.
G.
Caldwell
,
T. F.
Magnera
, and
P.
Kebarle
,
J. Am. Chem. Soc.
106
,
959
(
1984
).
5.
D. M.
Cyr
,
L. A.
Posey
,
G. A.
Bishea
,
C.-C.
Han
, and
M. A.
Johnson
,
J. Am. Chem. Soc.
113
,
9697
(
1991
).
6.
S. T.
Graul
and
M. T.
Bowers
,
J. Am. Chem. Soc.
113
,
9696
(
1991
).
7.
S. T.
Graul
and
M. T.
Bowers
,
J. Am. Chem. Soc.
116
,
3875
(
1994
).
8.
A. A.
Viggiano
,
J. S.
Paschkewitz
,
R. A.
Morris
,
J. F.
Paulson
,
A.
Gonzalez-Lafont
, and
D. G.
Truhlar
,
J. Am. Chem. Soc.
113
,
9404
(
1991
).
9.
B. D.
Wladkowski
,
K. F.
Lim
,
W. D.
Allen
, and
J. I.
Brauman
,
J. Am. Chem. Soc.
114
,
9136
(
1992
).
10.
K.
Giles
and
E. P.
Grimsrud
,
J. Phys. Chem.
96
,
6680
(
1992
).
11.
A. A.
Viggiano
,
R. A.
Morris
,
J. S.
Paschkewitz
, and
J. F.
Paulson
,
J. Am. Chem. Soc.
114
,
10477
(
1992
).
12.
W. B.
Knighton
,
J. A.
Bognar
,
P. M.
O’Connor
, and
E. P.
Grimsrud
,
J. Am. Chem. Soc.
115
,
12079
(
1993
).
13.
A. A.
Viggiano
,
R. A.
Morris
,
T.
Su
,
B. D.
Wladkowski
,
S. L.
Craig
,
M.
Zhong
, and
J. I.
Brauman
,
J. Am. Chem. Soc.
116
,
2213
(
1994
).
14.
M. V.
Basilevsky
and
V. M.
Ryaboy
,
Chem. Phys. Lett.
129
,
71
(
1986
).
15.
V. M.
Ryaboy
,
Chem. Phys. Lett.
159
,
371
(
1989
).
16.
S. C.
Tucker
and
D. G.
Truhlar
,
J. Phys. Chem.
93
,
8138
(
1989
).
17.
S. C.
Tucker
and
D. G.
Truhlar
,
J. Am. Chem. Soc.
112
,
3338
(
1990
).
18.
R.
Vetter
and
L.
Zülicke
,
J. Am. Chem. Soc.
112
,
5136
(
1990
).
19.
S. S. Shaik, H. B. Schlegel, and S. Wolfe, Theoretical Aspects of Physical Organic Chemistry: The SN2 Mechanism (Wiley, New York, 1992).
20.
See the chapters in Advances in Classical Trajectory Methods, Vol. 2, “Dynamics of Ion-Molecule Complexes,” edited by W. L. Hase (JAI, Greenwich, Connecticut, 1994), Vol. 2.
21.
S. R.
Vande Linde
and
W. L.
Hase
,
J. Am. Chem. Soc.
111
,
2349
(
1989
).
22.
S. R.
Vande Linde
and
W. L.
Hase
,
J. Phys. Chem.
94
,
2778
(
1990
).
23.
S. R.
Vande Linde
and
W. L.
Hase
,
J. Phys. Chem.
94
,
6148
(
1990
).
24.
S. R.
Vande Linde
and
W. L.
Hase
,
J. Chem. Phys.
93
,
7962
(
1990
).
25.
Y. J.
Cho
,
S. R.
Vande Linde
, and
W. L.
Hase
,
J. Chem. Phys.
96
,
8275
(
1992
).
26.
W. L.
Hase
and
Y. J.
Cho
,
J. Chem. Phys.
98
,
8626
(
1993
).
27.
H.
Wang
,
L.
Zhu
, and
W. L.
Hase
,
J. Phys. Chem.
98
,
1608
(
1994
).
28.
P. J. Robinson and K. A. Holbrook, Unimolecular Reactions (Wiley, New York, 1972).
29.
W. Forst, Theory of Unimolecular Reactions (Academic, New York, 1973).
30.
W. L. Hase, in Dynamics of Molecular Collisions, edited by W. H. Miller (Plenum, New York, 1976), Part B, p. 121.
31.
L.
Zhu
and
W. L.
Hase
,
Quantum Chemistry Program Exchange
,
14
,
644
(
1995
).
32.
L.
Zhu
and
W. L.
Hase
,
Chem. Phys. Lett.
175
,
117
(
1990
).
33.
E. E.
Aubanel
,
D. M.
Wardlaw
,
L.
Zhu
, and
W. L.
Hase
,
Int. Rev. Phys. Chem.
10
,
249
(
1991
).
34.
L.
Zhu
,
W.
Chen
,
W. L.
Hase
, and
E. W.
Kaiser
,
J. Phys. Chem.
97
,
311
(
1993
).
35.
W. L.
Hase
,
J. Chem. Phys.
64
,
2442
(
1976
);
W. L.
Hase
,
Acc. Chem. Res.
16
,
258
(
1983
).
36.
D. G.
Truhlar
and
B. C.
Garrett
,
Acc. Chem. Res.
13
,
440
(
1980
);
D. G.
Truhlar
,
W. L.
Hase
, and
J. T.
Hynes
,
J. Phys. Chem.
87
,
2664
(
1983
).
37.
D. M.
Wardlaw
and
R. A.
Marcus
,
Adv. Chem. Phys.
70
,
231
(
1988
).
38.
For the quantum RRKM inactive CH3Cl intramolecular mode model, the reactant potential energy minimum does not include CH3Cl zero-point energy. It does for the other two quantum RRKM models.
39.
The reaction path and vibrational frequencies orthogonal to the reaction path are found by following the path of steepest descent in mass-weighted Cartesian coordinates, see:
W. H.
Miller
,
N. C.
Handy
, and
J. E.
Adams
,
J. Chem. Phys.
72
,
99
(
1980
).
40.
D. G. Truhlar and J. T. Muckerman, in Atom-Molecule Collision Theory, edited by R. B. Bernstein (Plenum, New York, 1979), p. 505.
41.
X.
Hu
and
W. L.
Hase
,
J. Chem. Phys.
95
,
8073
(
1991
).
42.
A preliminary analysis of this type was reported previously, see Ref 24.
43.
W. L.
Hase
and
D. G.
Buckowski
,
J. Comput. Chem.
3
,
335
(
1982
).
44.
The ClCH3ClCl+CH3Cl dissociation probability is also nearly insensitive to excitation in the C-Cl stretch mode of CH3Cl, see Ref. 24.
45.
L. B.
Bhuiyan
and
W. L.
Hase
,
J. Chem. Phys.
78
,
5052
(
1983
).
46.
G. H.
Peslherbe
and
W. L.
Hase
,
J. Chem. Phys.
101
,
8535
(
1994
).
47.
W. L.
Hase
,
S. L.
Mondro
,
R. J.
Duchovic
, and
D. M.
Hirst
,
J. Am. Chem. Soc.
109
,
2916
(
1987
).
48.
S. J.
Klippenstein
and
R. A.
Marcus
,
J. Chem. Phys.
87
,
3410
(
1987
).
49.
J.
Yu
and
S. J.
Klippenstein
,
J. Phys. Chem.
95
,
9882
(
1991
).
50.
W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes: The Art of Scientific Computing, 2nd ed. (Cambridge University, New York, 1992).
51.
X.
Hu
and
W. L.
Hase
,
J. Phys. Chem.
93
,
6029
(
1989
).
52.
T.
Beyer
and
E. F.
Swinehart
,
Commun. Assoc. Comput. Machin.
16
,
372
(
1973
).
53.
G. Z.
Whitten
and
B. S.
Rabinovitch
,
J. Chem. Phys.
41
,
1883
(
1964
).
54.
P(l) for Erel of 3.0 kcal/mol was obtained by additional trajectory calculations.
55.
B. S.
Rabinovitch
and
D. W.
Setser
,
Adv. Photochem.
3
,
1
(
1964
).
56.
N. B. Slater, Theory of Unimolecular Reactions (Cornell University, Ithaca 1973), p. 130.
57.
W. L.
Hase
,
R. J.
Duchovic
,
K. N.
Swamy
, and
R. J.
Wolf
,
J. Chem. Phys.
80
,
714
(
1984
).
58.
R. A.
Marcus
,
W. L.
Hase
, and
K. N.
Swamy
,
J. Phys. Chem.
88
,
6717
(
1984
).
59.
D.-h.
Lu
and
W. L.
Hase
,
J. Chem. Phys.
90
,
1557
(
1989
).
60.
D.-h.
Lu
and
W. L.
Hase
,
J. Phys. Chem.
93
,
1681
(
1989
).
61.
T. McMahon (private communication).
62.
T.
Su
and
W. J.
Chesnavich
,
J. Chem. Phys.
76
,
5183
(
1982
).
63.
D. L.
Bunker
,
J. Chem. Phys.
40
,
1946
(
1964
).
64.
W. L.
Hase
,
J. Phys. Chem.
90
,
365
(
1986
).
65.
W. P.
Reinhardt
,
J. Phys. Chem.
86
,
2158
(
1982
);
R. B.
Shirts
and
W. P.
Reinhardt
,
J. Chem. Phys.
77
,
5204
(
1982
).
66.
R. A.
Marcus
,
Faraday Discus. Chem. Soc.
55
,
9
(
1973
);
R. A.
Marcus
,
55
,
34
(
1973
).,
Faraday Discuss. Chem. Soc.
67.
W. H.
Miller
,
Adv. Chem. Phys.
25
,
69
(
1974
).
68.
See the chapters in Resonances, edited by D. G. Truhlar (American Chemical Society, Washington, D.C., 1984)
This content is only available via PDF.
You do not currently have access to this content.