We present an efficient method for exact wave function propagation with several degrees of freedom based on time‐dependent discrete variable representations (TD‐DVR) of the evolution operator. The key idea is to use basis sets that evolve in time according to appropriate reference Hamiltonians to construct TD‐DVR grids. The initial finite basis representation is chosen to include the initial wavefunction and thus the evolution under the bare zeroth order Hamiltonian is described at each time by a single DVR point. For this reason TD‐DVR grids offer optimal representations in time‐dependent calculations, allowing significant reduction of grid size and large time steps while requiring numerical effort that (for systems with several degrees of freedom) scales almost linearly with the total grid size. The method is readily applicable to systems described by time‐dependent Hamiltonians. TD‐DVR grids based on the time‐dependent self‐consistent field approximation are shown to be very useful in the study of intramolecular or collision dynamics.

1.
See several articles in the special thematic issue on Time-Dependent Methods for Quantum Dynamics,
Comp. Phys. Commun.
63
(
1991
).
2.
(a)
N.
Makri
,
Chem. Phys. Lett.
193
,
435
(
1992
);
in Time-Dependent Quantum Molecular Dynamics, edited by J. Broeckhove and L. Lathouwers (Plenum, New York, 1992), p. 209;
(b)
M.
Topaler
and
N.
Makri
,
J. Chem. Phys.
97
,
9001
(
1992
);
M.
Topaler
and
N.
Makri
,
Chem. Phys. Lett.
210
,
285
(
1993
);
M.
Topaler
and
N.
Makri
,
210
,
448
(
1993
); ,
Chem. Phys. Lett.
M.
Topaler
and
N.
Makri
,
J. Chem. Phys.
101
,
7500
(
1994
);
(c)
D. E.
Makarov
and
N.
Makri
,
Phys. Rev. A
48
,
3626
(
1993
);
(d)
G.
Ilk
and
N.
Makri
,
J. Chem. Phys.
101
,
6708
(
1994
).
3.
D. E.
Makarov
and
N.
Makri
,
Chem. Phys. Lett.
221
,
482
(
1994
);
N. Makri and D. E. Makarov, J. Chem. Phys. (in press).
4.
D.
Thirumalai
,
E. J.
Bruskin
, and
B. J.
Berne
,
J. Chem. Phys.
79
,
5063
(
1983
).
5.
N.
Makri
,
Chem. Phys. Lett.
159
,
489
(
1989
).
6.
N.
Makri
,
J. Chem. Phys.
97
,
2417
(
1993
).
7.
O. A.
Sharafeddin
,
D. J.
Kouri
,
N.
Nayar
, and
D. K.
Hoffman
,
J. Chem. Phys.
95
,
3224
(
1991
);
D. K.
Hoffman
,
N.
Nayar
,
O. A.
Sharafeddin
, and
D. J.
Kouri
,
J. Chem. Phys.
95
,
8299
(
1991
); ,
J. Chem. Phys.
D. K.
Hoffman
and
D. J.
Kouri
,
J. Chem. Phys.
96
,
1179
(
1992
).,
J. Chem. Phys.
8.
M. D.
Feit
and
J. A.
Fleck
, Jr.
, and
A.
Steiger
,
J. Comput. Phys.
47
,
412
(
1982
);
M. D.
Feit
and
J. A.
Fleck
, Jr.
,
J. Chem. Phys.
78
,
301
(
1983
).
9.
D.
Kosloff
and
R.
Kosloff
,
J. Comput. Phys.
52
,
35
(
1983
).
10.
E. O. Brigham, The Fast Fourier Transform (Prentice-Hall, Englewood Cliffs, NJ, 1974).
11.
J. Z. H.
Zhang
,
J. Chem. Phys.
92
,
324
(
1990
);
J. Z. H.
Zhang
,
Chem. Phys. Lett.
160
,
417
(
1989
).
12.
(a)
S.
Das
and
D. J.
Tannor
,
J. Chem. Phys.
92
,
3403
(
1990
);
(b)
C. J.
Williams
,
J.
Qian
, and
D. J.
Tannor
,
J. Chem. Phys.
95
,
1721
(
1991
).,
J. Chem. Phys.
13.
D. O.
Harris
,
G. G.
Engerholm
, and
W. D.
Gwinn
,
J. Chem. Phys.
43
,
1515
(
1965
);
A. S.
Dickinson
and
P. R.
Certain
,
J. Chem. Phys.
49
,
4209
(
1968
).,
J. Chem. Phys.
14.
(a)
J. V.
Lill
,
G. A.
Parker
, and
J. C.
Light
,
Chem. Phys. Lett.
89
,
483
(
1982
);
J. V.
Lill
,
G. A.
Parker
, and
J. C.
Light
,
J. Chem. Phys.
85
,
900
(
1986
);
(b)
J. C.
Light
,
I. P.
Hamilton
, and
J. V.
Lill
,
J. Chem. Phys.
82
,
1400
(
1985
); ,
J. Chem. Phys.
(c)
S. E.
Choi
and
J. C.
Light
,
J. Chem. Phys.
92
,
2129
(
1990
); ,
J. Chem. Phys.
(d)
Z.
Bacic
and
J. C.
Light
,
J. Chem. Phys.
85
,
4594
(
1986
); ,
J. Chem. Phys.
Z.
Bacic
and
J. C.
Light
,
86
,
3065
(
1987
); ,
J. Chem. Phys.
Z.
Bacic
and
J. C.
Light
,
Annu. Rev. Phys. Chem.
40
,
469
(
1989
).
15.
J.
Echave
and
D. C.
Clary
,
Chem. Phys. Lett.
190
,
225
(
1992
).
16.
J. C. Light, R. M. Whitnell, T. J. Park, and S. E. Choi, in Supercomputer Algorithms for Reactivity Dynamics and Kinetics of Small Molecules, NATO ASI Series C, edited by A. Lagana (Kluever, Dortrecht, 1989), Vol. 277, p. 187.
17.
U.
Manthe
and
H.
Koppel
,
J. Chem. Phys.
93
,
345
(
1991
).
18.
A. D.
McLachlan
,
Mol. Phys.
8
,
39
(
1964
).
19.
For a review of applications of TDSCF in chemical physics see the review by
R. B.
Gerber
and
M. A.
Ratner
,
Adv. Chem. Phys.
97
,
4781
(
1992
), and references therein.
20.
(a)
J.
Campos-Martinez
and
R. D.
Coalson
,
J. Chem. Phys.
93
,
4740
(
1990
);
J.
Campos-Martinez
and
R. D.
Coalson
, (b)
99
,
9629
(
1993
).,
J. Chem. Phys.
21.
N.
Makri
and
W. H.
Miller
,
J. Chem. Phys.
87
,
5781
(
1987
).
22.
D.
Secrest
and
B. R.
Johnson
,
J. Chem. Phys.
45
,
4556
(
1966
).
23.
(a)
H.-D.
Meyer
,
U.
Manthe
, and
L. S.
Cederbaum
,
Chem. Phys. Lett.
165
,
73
(
1990
);
(b)
U.
Manthe
,
H.-D.
Meyer
, and
L. S.
Cederbaum
,
J. Chem. Phys.
97
,
3199
,
9062
(
1992
).
24.
M.
Henon
and
C.
Heiles
,
Astron. J.
69
,
73
(
1964
).
25.
See, for example, (a) A. J. Lichtenberg and M. A. Lieberman, Regular and Chaotic Dynamics (Springer, New York, 1991);
(b) M. C. Gutzwiller, Chaos in Classical and Quantum Mechanics (Springer, New York, 1990).
26.
Z. M.
Li
and
R. B.
Gerber
,
J. Chem. Phys.
99
,
8637
(
1993
).
This content is only available via PDF.
You do not currently have access to this content.