Hybrid methods, including a mixture of Hartree–Fock exchange and density functional exchange‐correlation treatment have been applied to the cationic methyl complexes MCH+3 of the first and third‐row transition metals (M=Sc–Cu,La,Hf–Au). Bond dissociation energies and optimum geometries obtained with the ‘‘Becke‐Half‐and‐Half‐Lee–Yang–Parr’’ and ‘‘Becke‐3‐Lee–Yang–Parr’’ functionals and from calibration calculations employing quadratic configuration interaction with single and double excitations and with a perturbative estimate of triple excitations are reported. A comparison of the results for the 3d‐block species to earlier high‐level abinitio calculations and experimental data is carried out in order to assess the reliability of hybrid methods as a practical tool in organometallic chemistry. Furthermore, the bond dissociation energies of the cationic 5d‐block transition‐metal methyl complexes, many of which have not been investigated so far, are predicted.

1.
For reviews, see (a)
P. B.
Armentrout
,
Ann. Rev. Phys. Chem.
41
,
313
(
1990
);
(b)
J. A.
Martinho Simoes
and
J. L.
Beauchamp
,
Chem. Rev.
90
,
629
(
1990
);
(c)
K.
Eller
,
H.
Schwarz
,
Chem. Rev.
91
,
1121
(
1991
);
(d)
J. C.
Weisshaar
,
Acc. Chem. Res.
26
,
213
(
1990
).
2.
For recent examples, (a)
D. G.
Musaev
,
N.
Koga
, and
K.
Morokuma
,
Isr. J. Chem.
33
,
307
(
1993
);
(b)
H.
Partridge
and
C. W.
Bauschlicher
,
J. Chem. Phys.
98
,
2301
(
1994
);
(c)
M. R. A.
Blomberg
,
P. E. M.
Siegbahn
, and
M.
Svensson
,
J. Phys. Chem.
98
,
2062
(
1994
).
3.
(a) R. G. Parr and W. Yang, Density-Functional Theory of Atoms and Molecules (Oxford University, New York, 1989);
(b) N. H. March, Electron Density Theory of Atoms and Molecules (Academic, London, 1992).
For an excellent review, see
T.
Ziegler
,
Chem. Rev.
91
,
651
(
1991
).
4.
V.
Tschinke
and
T.
Ziegler
,
Theor. Chim. Acta
81
,
65
(
1991
).
5.
A. D.
Becke
,
J. Chem. Phys.
98
,
5648
(
1993
).
6.
GAUSSIAN 92/DFT, Revision F.2, M. J. Frisch, G. W. Trucks, M. Head-Gordon, P. M. W. Gill, M. W. Wong, J. B. Foresman, B. G. Johnson, H. B. Schlegel, M. A. Robb, E. S. Replogle, R. Gomperts, J. L. Anders, K. Raghavachari, J. S. Binkley, C. Gonzalez, R. L. Martin, D. J. Fox, D. J. DeFrees, J. Baker, J. J. P. Stewart, and J. A. Pople (Gaussian Inc., Pittsburgh, 1993).
7.
C. W.
Bauschlicher
, Jr.
,
S. R.
Langhoff
,
H.
Partridge
, and
L. A.
Barnes
,
J. Chem. Phys.
91
,
2399
(
1989
).
8.
P. B.
Armentrout
and
R.
Georgiadis
,
Polyhedron
7
,
1573
(
1988
), and references cited herein.
9.
(a)
K. K.
Irikura
and
J. L.
Beauchamp
,
J. Phys. Chem.
95
,
8344
(
1991
);
(b)
R.
Wesendrup
,
D.
Schröder
, and
H.
Schwarz
,
Angew. Chem. Int. Ed. Engl.
33
,
1174
(
1994
);
C. Heinemann, R. Wesendrup, and H. Schwarz, Augew. Chem. (submitted).
10.
A. D.
Becke
,
J. Phys. Chem.
98
,
1372
(
1993
).
11.
A. D.
Becke
,
Phys. Rev. A
38
,
3098
(
1988
).
12.
C.
Lee
,
W.
Yang
, and
R. G.
Parr
,
Phys. Rev. B
37
,
785
(
1988
).
13.
S. H.
Vosko
,
L.
Wilk
, and
M.
Nusair
,
Can. J. Phys.
58
,
1200
(
1980
).
14.
(a)
V.
Barone
,
Chem. Phys. Lett.
226
,
392
(
1994
);
(b)
F.
Lelj
,
C.
Adamo
, and
V.
Barone
,
Chem. Phys. Lett.
230
,
189
(
1994
);
(c)
V.
Basone
,
J. Chem. Phys.
101
,
6834
(
1994
).
15.
N.
Goldberg
,
A.
Fiedler
,
R.
Flammang
, and
H.
Schwarz
,
Helv. Chim. Acta
77
,
2354
(
1994
).
16.
(a)
D.
Schröder
,
A.
Fiedler
, and
H.
Schwarz
,
Int. J. Mass Spectrom. Ion Processes
134
,
239
(
1994
);
(b) J. Hrušak, R. H. Hertwig, D. Schröder, P. Schwerdtfeger, W. Koch, and H. Schwarz, Organometallics (in press).
17.
K.
Raghavachari
and
G. W.
Trucks
,
J. Chem. Phys.
91
,
1062
(
1989
).
18.
J. A.
Pople
,
M.
Head-Gordon
, and
K.
Raghavachari
,
J. Chem. Phys.
87
,
5958
(
1987
).
19.
P. J.
Hay
and
W. R.
Wadt
,
J. Chem. Phys.
82
,
299
(
1985
).
20.
T. H. Dunning and P. J. Hay, Modern Theoretical Chemistry (Plenum, New York, 1976), pp. 1–28.
21.
The terms “loose” and “tight” employed here refer to the respective default settings used in the actual GAUSSIAN program version.
22.
A. E.
Reed
,
L. A.
Curtiss
, and
F.
Weinhold
,
Chem. Rev.
88
,
899
(
1988
).NBO included in GAUSSIAN 92: E. D. Gladening, A. E. Reed, J. E. Carpenter, and F. Weinhold, NBO, version 3.1.
23.
These exponents resulted from a three-term fit to a Slater-type orbital,
R. F.
Stewart
,
J. Chem. Phys.
52
,
431
(
1970
);
M.
Sodupe
and
C. W.
Bauschlicher
, Jr.
,
J. Phys. Chem.
95
,
8640
(
1991
);
M. A. Blomberg (personal communication).
24.
O.
Gunnarson
and
R. O.
Jones
,
Phys. Rev. B
31
,
7588
(
1985
).
25.
T.
Ziegler
and
J.
Li
,
Can. J. Chem.
72
,
783
(
1994
).
26.
See, for example, results reported in
E.
Magnusson
and
N. W.
Moriarty
,
J. Comput. Chem.
14
,
961
(
1993
).
27.
M.
Böhme
and
G.
Frenking
,
Chem. Phys. Lett.
224
,
195
(
1994
).
28.
J.
Hrušák
,
W.
Koch
, and
H.
Schwarz
,
J. Chem. Phys.
101
,
3898
(
1994
).
29.
G.
Ohanessian
and
G. A.
Goddard
III
,
Acc. Chem. Res.
23
,
386
(
1990
).
30.
C. Heinemann, R. H. Hertwig, R. Wesendrup, W. Koch, and H. Schwarz, J. Am. Chem. Soc. (in press).
31.
For an excellent review on relativistic effects, see
P.
Pyykkö
,
Chem. Rev.
88
,
563
(
1988
).
32.
C. E. Moore, Natl. Bur. Stand. (U.S.), Circ. 467 (1949).
33.
See, for example, the values for 3d/4s and 3d/3d given in
E. A.
Carter
, and
W. A.
Goddard
III
,
J. Phys. Chem.
92
,
5679
(
1988
).
34.
(a)
G.
Ohanessian
,
M. J.
Brusich
, and
W. A.
Goddard
III
,
J. Am. Chem. Soc.
112
,
7179
(
1990
);
(b)
K. K.
Irikura
and
W. A.
Goddard
,
J. Am. Chem. Soc.
116
,
8733
(
1994
);
(c) For a fully relativistic calculation on PtH’, see
K. G.
Dyall
,
J. Chem. Phys.
98
,
9678
(
1993
).
35.
L. S.
Sunderlin
and
P. B.
Armentrout
,
J. Am. Chem. Soc.
111
,
3845
(
1989
).
36.
(a)
J. B.
Schilling
and
J. L.
Beauchamp
,
J. Am. Chem. Soc.
110
,
15
(
1988
);
(b)
C.
Heinemann
,
D.
Schröder
,
H.
Schwarz
,
Chem. Ber.
127
,
1807
(
1994
);
(c)
C.
Heinemann
,
N.
Goldberg
,
I.
Tornieporth-Oetting
,
T. M.
Klapötke
,
H.
Schwarz
,
Angew. Chem. Int. Ed. Engl.
34
,
216
(
1995
);
(d)
W. W.
Yin
,
A. G.
Marshall
,
J.
Marçalo
, and
A.
Pires de Matos
,
J. Am. Chem. Soc.
116
,
8666
(
1994
);
(e) H. H. Cornehl, C. Heinemann, D. Schröder, and H. Schwarz, Organometallics (in press).
37.
J. K.
Perry
,
G.
Ohanessian
, and
W. A.
Goddard
III
,
Organometallics
13
,
1870
(
1994
).
38.
P. B. Armentrout, Bonding Energies in Organometallic Compounds, edited by T. J. Marks, ACS Symposium Series 428 (American Chemical Society, Washington, D.C., 1990).
39.
A. K.
Chowdhury
and
C. L.
Wilkins
,
J. Am. Chem. Soc.
109
,
5336
(
1987
).
This content is only available via PDF.
You do not currently have access to this content.