A computer simulation method is developed for the study of the adiabatic heterogeneous electron transfer reactions between an ion in solution and a metal electrode. The particular system studied is the Fe2+/Fe3+ electron transfer reaction with a Pt(111) electrode. The adiabatic classical free energy curve for the reaction is computed using umbrella sampling and molecular dynamics generated by the adiabatic solution to an Anderson–Newns‐like Hamiltonian. Reactive flux calculations are then performed to determine the effect of transition state recrossings on the classical adiabatic rate constant. These effects are not found to be large (κ∼0.6). The water solvent model is next quantized using Feynman path integral techniques and the quantum adiabatic free energy curve for electronic transfer is calculated. The latter calculation shows that the solvent activation free energy barrier and thermodynamic driving force for the electron transfer process can be significantly affected by the water quantization. These results suggest that classical models for water may not be adequate, or at least need to be modified, for the accurate computer simulation of many heterogeneous electron transfer reactions.

1.
R. A.
Marcus
and
N.
Sutin
,
Biochim. Biophys. Acta
811
,
265
(
1985
).
2.
J. Ulstrup, Charge Transfer Processes in Condensed Media (Springer, Berlin, 1987).
3.
E. A.
Carter
and
J. T.
Hynes
,
J. Phys. Chem.
93
,
2184
(
1989
).
4.
M.
Tachiya
,
J. Phys. Chem.
93
,
7050
(
1989
).
5.
G.
King
and
A.
Warshel
,
J. Chem. Phys.
93
,
8682
(
1990
);
for a review, see
A.
Warshel
and
W. W.
Parson
,
Annu. Rev. Phys. Chem.
42
,
279
(
1991
).
6.
T.
Kakitani
and
N.
Mataga
,
J. Phys. Chem.
91
,
6277
(
1987
).
7.
T.
Kakitani
and
N.
Mataga
,
J. Phys. Chem.
90
,
933
(
1986
).
8.
R. A.
Kuharski
,
J. S.
Bader
,
D.
Chandler
,
M.
Sprik
, and
R. W.
Impey
,
J. Chem. Phys.
89
,
3248
(
1988
).
9.
J. S.
Bader
,
R. A.
Kuharski
, and
D.
Chandler
,
J. Chem. Phys.
93
,
230
(
1990
).
10.
X.
Song
and
R. A.
Marcus
,
J. Chem. Phys.
99
,
7768
(
1993
).
11.
J. B.
Straus
and
G. A.
Voth
,
J. Phys. Chem.
97
,
7388
(
1993
).
12.
J. W.
Halley
and
J.
Hautman
,
Phys. Rev. B
38
,
11704
(
1988
).
13.
I.
Benjamin
,
J. Phys. Chem.
,
95
,
6675
(
1991
).
14.
D. A.
Rose
and
I.
Benjamin
,
J. Chem. Phys.
100
,
3545
(
1994
).
15.
P. W.
Anderson
,
Phys. Rev.
124
,
41
(
1961
).
16.
D. M.
Newns
,
Phys. Rev.
178
,
1123
(
1969
).
17.
T. B. Grimley, in Progress in Surface and Membrane Sciences, edited by D. A. Cadenhead and J. F. Daniellei (Academic, San Francisco, 1975), Vol. 9.
18.
J. P.
Muscat
and
D. M.
Newns
,
Prog. Surf. Sci.
9
,
1
(
1978
).
19.
W.
Schmickler
,
J. Electroanal. Chem.
204
,
31
(
1986
).
20.
K. L.
Sebastian
,
J. Chem. Phys.
90
,
5056
(
1989
).
21.
B. B.
Smith
and
J. T.
Hynes
,
J. Chem. Phys.
99
,
6517
(
1993
).
22.
R. P. Feynman, Statistical Mechanics (Addison-Wesley, Reading, MA, 1972).
23.
For reviews of path integral methods, see
B. J.
Berne
and
D.
Thirumalai
,
Annu. Rev. Phys. Chem.
37
,
401
(
1986
);
J. D.
Doll
,
D. L.
Freeman
, and
T. L.
Beck
,
Adv. Chem. Phys.
78
,
61
(
1990
);
Quantum Simulations of Condensed Matter Phenomena, edited by J. D. Doll and J. E. Gubernatis (World Scientific, Singapore, 1990);
D. Chandler, in Liquides, Cristallisation et Transition Vitreuse, Les Houches, Session LI, edited by D. Levesque, J. P. Hansen, and J. Zinn-Justin (Elsevier, New York, 1991).
24.
(a)
G. A.
Voth
,
D.
Chandler
, and
W. H.
Miller
,
J. Chem. Phys.
91
,
7749
(
1989
);
G. A.
Voth
,
Chem. Phys. Lett.
170
,
289
(
1990
);
for a review of path integral QTST, see
G. A.
Voth
,
J. Phys. Chem.
97
,
8365
(
1993
);
(b) see also the related work of
M. J.
Gillan
,
J. Phys. C
20
,
3621
(
1993
).
25.
K.
Toukan
and
A.
Rahman
,
Phys. Rev. B
31
,
2643
(
1985
).
26.
J.
Anderson
,
J. J.
Ullo
, and
S.
Yip
,
J. Chem. Phys.
87
,
1726
(
1987
).
27.
S.
Nosé
,
Mol. Phys.
52
,
255
(
1984
).
28.
K.
Raghavan
,
K.
Foster
,
K.
Motakabbir
, and
M.
Berkowitz
,
J. Chem. Phys.
94
,
2110
(
1991
).
29.
E.
Spohr
and
K.
Heinzinger
,
Ber. Bunsenges. Phys. Chem.
92
,
1358
(
1988
).
30.
B. J.
Gertner
,
K. R.
Wilson
, and
J. T.
Hynes
,
J. Chem. Phys.
89
,
3537
(
1989
).
31.
J.
Hautman
,
J. W.
Halley
, and
Y. J.
Rhee
,
J. Chem. Phys.
91
,
467
(
1989
). Note this article contains a typographical error: the units of angstroms for the constants in Eq. (1) of this paper should be omitted.
32.
H. J. C.
Berendsen
,
J. R.
Grigera
, and
T. P.
Straatsma
,
J. Phys. Chem.
91
,
6269
(
1991
).
33.
D.
Chandler
,
J. Chem. Phys.
68
,
2959
(
1978
);
J. A.
Montgomery
, Jr.
,
D.
Chandler
, and
B. J.
Berne
,
J. Chem. Phys.
70
,
4056
(
1979
); ,
J. Chem. Phys.
R. O.
Rosenberg
,
B. J.
Berne
, and
D.
Chandler
,
Chem. Phys. Lett.
75
,
162
(
1980
);
J.
Keck
,
J. Chem. Phys.
32
,
1035
(
1960
);
J. B.
Anderson
,
J. Chem. Phys.
58
,
4684
(
1973
); ,
J. Chem. Phys.
C. H.
Bennett
,
Am. Chem. Soc. Symp. Ser.
46
,
63
(
1977
);
J. T. Hynes, in The Theory of Chemical Reactions, edited by M. Baer (Chemical Rubber, Boca Raton, FL, 1985);
B. J. Berne, in Multiple Timescales, edited by J. V Brackbill and B. I. Cohen (Academic, New York, 1985).
34.
D. Chandler, Introduction to Modern Statistical Mechanics (Oxford U.P., New York, 1987).
35.
J. Lobaugh (private communication).
36.
R. A.
Kuharski
and
P. J.
Rossky
,
J. Chem. Phys.
82
,
5164
(
1985
).
37.
J.
Cao
and
G. A.
Voth
,
J. Chem. Phys.
100
,
5093
,
5106
(
1994
).
38.
J. D. Jackson, Classical Electrodynamics (Wiley, New York, 1975).
This content is only available via PDF.
You do not currently have access to this content.