Using a series of correlation consistent basis sets from double to quintuple zeta in conjunction with large internally contracted multireference configuration interaction (CMRCI) wave functions, potential energy functions have been computed for the X1Σ+g and a3Πu states of C2 and the 1 1Σ+ and 1 3Π states of CN+, BN, and BO+. By exploiting the regular convergence behavior of the correlation consistent basis sets, complete basis set limits have been estimated that led to accurate predictions for the electronic excitation energies, dissociation energies, equilibrium bond lengths, and harmonic vibrational frequencies. The 1 1Σ+ states of CN+ and BO+ are predicted to be the electronic ground states of these species with predicted equilibrium excitation energies (Te) to the low‐lying a3Π states of 880±100 cm−1 and 5000±200 cm−1, respectively. A3Π ground state of BN is predicted with an excitation energy to the low‐lying a1Σ+ state of just 190±100 cm−1. Identical calculations on the singlet–triplet splitting of C2 yielded a prediction of 778 cm−1 for Te, which was just 62 cm−1 above the experimental value. Accurate equilibrium bond lengths and fundamental frequencies are also predicted for BN, BO+, and the a3Π state of CN+. Dipole moment functions have been computed by CMRCI for the ground and excited electronic states of the three heteronuclear diatomics, and these have been used to derive accurate microwave and infrared transition probabilities for these species. A dipole moment in v=0 of 5.42 D is calculated for the X1Σ+ state of BO+, which should lead to an intense microwave spectrum. While the X3Π ground state of BN is predicted to have a very weak infrared spectrum, this species should be observable in the microwave region since the predicted μ0 is 1.98 D. Both the microwave and infrared spectra of X1Σ+ CN+ should be of moderate intensity.

1.
C. W.
Bauschlicher
, Jr.
,
S. R.
Langhoff
, and
P. R.
Taylor
,
Adv. Chem. Phys.
77
,
103
(
1990
).
2.
C. W.
Bauschlicher
, Jr.
and
S. R.
Langhoff
,
Chem. Rev.
91
,
701
(
1991
).
3.
H.-J.
Werner
and
P. J.
Knowles
,
Theor. Chim. Acta
78
,
175
(
1990
).
4.
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
90
,
1007
(
1989
).
5.
R. A.
Kendall
,
T. H.
Dunning
, Jr.
, and
R. J.
Harrison
,
J. Chem. Phys.
96
,
6796
(
1992
).
6.
D. E.
Woon
and
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
98
,
1358
(
1993
).
7.
D. E.
Woon
and
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
99
,
1914
(
1993
).
8.
K. A.
Peterson
,
R. A.
Kendall
, and
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
99
,
1930
(
1993
).
9.
K. A.
Peterson
,
R. A.
Kendall
, and
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
99
,
9790
(
1993
).
10.
K. A.
Peterson
,
D. E.
Woon
, and
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
100
,
7410
(
1994
).
11.
D. E.
Woon
,
J. Chem. Phys.
100
,
2838
(
1994
).
12.
D. E.
Woon
and
T. H.
Dunning
, Jr.
,
J. Chem. Phys.
101
,
8877
(
1994
).
13.
K. P. Huber and G. Herzberg, Molecular Spectra and Molecular Structure IV. Constants of Diatomic Molecules (Van Nostrand, Princeton, 1979).
14.
M.
Zeitz
,
S. D.
Peyerimhoff
, and
R. J.
Buenker
,
Chem. Phys. Lett.
58
,
487
(
1978
).
15.
J. O.
Arnold
and
S. R.
Langhoff
,
J. Quantum Spectrosc. Radiat. Transfer
19
,
461
(
1978
).
16.
K.
Kirby
and
B.
Liu
,
J. Chem. Phys.
70
,
893
(
1979
).
17.
M.
Dupuis
and
B.
Liu
,
J. Chem. Phys.
73
,
337
(
1980
).
18.
C. F.
Chabalowski
,
S. D.
Peyerimhoff
, and
R. J.
Buenker
,
Chem. Phys.
81
,
57
(
1983
).
19.
C. M.
Rohlfing
and
R. L.
Martin
,
J. Chem. Phys.
90
,
2043
(
1986
).
20.
H. P.
Lüthi
and
A. D.
McLean
,
Chem. Phys. Lett.
135
,
352
(
1987
).
21.
C. W.
Bauschlicher
, Jr.
and
S. R.
Langhoff
,
J. Chem. Phys.
87
,
2919
(
1987
).
22.
W. D.
Kraemer
and
B. O.
Roos
,
Chem. Phys.
118
,
345
(
1987
).
23.
J. D.
Watts
and
R. J.
Bartlett
,
J. Chem. Phys.
96
,
6073
(
1992
).
24.
H.
Bredohl
,
I.
Dubois
,
Y.
Houbrechts
, and
P.
Nzohabonayo
,
J. Phys. B
17
,
95
(
1984
).
25.
H.
Bredohl
,
I.
Dubois
,
Y.
Houbrechts
, and
P.
Nzohabonayo
,
J. Mol. Spectrosc.
112
,
430
(
1985
).
26.
J. M. L.
Martin
,
T. J.
Lee
,
G. E.
Scuseria
, and
P. R.
Taylor
,
J. Chem. Phys.
97
,
6549
(
1992
).
27.
O. A.
Mosher
and
R. P.
Frosch
,
J. Chem. Phys.
52
,
5781
(
1970
).
28.
G.
Verhaegen
,
W. G.
Richards
, and
C. M.
Moser
,
J. Chem. Phys.
46
,
160
(
1967
).
29.
S. P.
Karna
and
F.
Grein
,
Chem. Phys.
98
,
207
(
1985
).
30.
S. P.
Karna
and
F.
Grein
,
Chem. Phys. Lett.
144
,
149
(
1988
).
31.
K.
Bhanuprakash
and
R. J.
Buenker
,
Chem. Phys. Lett.
152
,
215
(
1988
).
32.
J. M. L.
Martin
,
J. P.
Francois
, and
R.
Gijbels
,
J. Chem. Phys.
90
,
6469
(
1989
).
33.
J. M. L.
Martin
,
J. P.
Francois
, and
R.
Gijbels
,
Z. Phys. D
21
,
47
(
1991
).
34.
A. A.
Wu
,
Chem. Phys.
21
,
173
(
1977
).
35.
A. A.
Wu
,
Chem. Phys. Lett.
59
,
457
(
1978
).
36.
T.-K.
Ha
,
Chem. Phys. Lett.
66
,
317
(
1979
).
37.
D. M.
Hirst
,
Chem. Phys. Lett.
65
,
181
(
1979
).
38.
P. J.
Bruna
,
S. D.
Peyerimhoff
, and
R. J.
Buenker
,
Chem. Phys. Lett.
72
,
278
(
1980
).
39.
P. J.
Bruna
,
S. D.
Peyerimhoff
, and
R. J.
Buenker
,
J. Chem. Phys.
72
,
5437
(
1980
).
40.
J. N.
Murrell
,
A.
Al-Derzi
,
J.
Tennyson
, and
M. F.
Guest
,
Mol. Phys.
38
,
1755
(
1979
).
41.
B. O.
Roos
,
P.
Linse
,
P. E. M.
Siegbahn
, and
M. R. A.
Blomberg
,
Chem. Phys.
66
,
197
(
1982
).
42.
S. P.
Karna
and
F.
Grein
,
Mol. Phys.
61
,
1055
(
1987
).
43.
K. A. Peterson and T. H. Dunning, Jr. (in preparation).
44.
The correlation consistent and augmented correlation consistent basis sets for the first row and second row atoms (plus hydrogen and helium) may be downloaded via anonymous ftp from pnlg.pnl.gov in directory ccbasis.
45.
R. C.
Raffenetti
,
J. Chem. Phys.
58
,
4452
(
1973
).
46.
D.
Feller
,
J. Chem. Phys.
96
,
6104
(
1992
).
47.
S. S.
Xantheas
and
T. H.
Dunning
, Jr.
,
J. Phys. Chem.
97
,
18
(
1993
).
48.
D. E.
Woon
,
Chem. Phys. Lett.
204
,
29
(
1993
).
49.
L. M.
Cheung
,
K. R.
Sundberg
, and
K.
Ruedenberg
,
Int. J. Quantum Chem.
16
,
1103
(
1979
).
50.
B.
Roos
,
P.
Taylor
, and
P. E. M.
Siegbahn
,
Chem. Phys.
48
,
157
(
1980
).
51.
P. E. M.
Siegbahn
,
L.
Almlof
,
A.
Heiberg
, and
B. O.
Roos
,
J. Chem. Phys.
74
,
2384
(
1981
).
52.
H.-J.
Werner
and
P. J.
Knowles
,
J. Chem. Phys.
82
,
5053
(
1985
).
53.
P. J.
Knowles
and
H.-J.
Werner
,
Chem. Phys. Lett.
115
,
259
(
1985
).
54.
H.-J.
Werner
and
P. J.
Knowles
,
J. Chem. Phys.
89
,
5803
(
1988
).
55.
P. J.
Knowles
and
H.-J.
Werner
,
Chem. Phys. Lett.
145
,
514
(
1988
).
56.
S. R.
Langhoff
and
E. R.
Davidson
,
Int. J. Quantum Chem.
8
,
61
(
1974
).
57.
M. R. A.
Blomberg
and
P. E. M.
Siegbahn
,
J. Chem. Phys.
78
,
5682
(
1983
).
58.
MOLPRO is a suite of ab initio programs written by H.-J. Werner and P. J. Knowles with contributions by J. Almlöf, R. D. Amos, M. J. O. Deegan, S. T. Elbert, C. Hampel, W. Meyer, K. A. Peterson, R. M. Pitzer, E.-A. Reinsch, A. J. Stone, and P. R. Taylor.
59.
R.
Shepard
,
I.
Shavitt
,
R. M.
Pitzer
,
D. C.
Comeau
,
M.
Pepper
,
H.
Lischka
,
P. G.
Szalay
,
R.
Ahlrichs
,
F. B.
Brown
, and
J.-G.
Zhao
,
Int. J. Quantum Chem. Symp.
22
,
149
(
1988
).
60.
J. L.
Dunham
,
Phys. Rev.
41
,
721
(
1932
).
61.
J. W.
Cooley
,
Math. Comput.
15
,
363
(
1961
).
62.
C. E. Moore, Natl. Stand. Ref Data Ser. Natl. Bur. Stand. (1971).
63.
P. J.
Knowles
and
N. C.
Handy
,
Chem. Phys. Lett.
111
,
315
(
1984
).
64.
P. J.
Knowles
and
N. C.
Handy
,
Comp. Phys. Commun.
54
,
75
(
1989
).
65.
D. E. Woon, K. A. Peterson, and T. H. Dunning, Jr. (in preparation).
66.
R. S.
Urdahl
,
Y.
Bao
, and
W. M.
Jackson
,
Chem. Phys. Lett.
178
,
425
(
1991
).
67.
A. D.
Pradhan
,
H.
Partridge
, and
C. W.
Bauschlicher
, Jr.
,
J. Chem. Phys.
101
,
3857
(
1994
).
68.
S. R.
Langhoff
,
C. W.
Bauschlicher
, Jr.
, and
H.
Partridge
,
J. Chem. Phys.
84
,
4474
(
1986
).
69.
C. W.
Bauschlicher
, Jr.
and
S. R.
Langhoff
,
Theor. Chim. Acta
73
,
43
(
1988
).
70.
C.
Chackerian
, Jr.
,
J. Chem. Phys.
65
,
4228
(
1976
).
71.
J. Overend, in Infrared Spectroscopy and Molecular Structure, edited by M. M. Davies (Elsevier, Amsterdam, 1963).
This content is only available via PDF.
You do not currently have access to this content.