The symmetry adapted cluster‐configuration interaction (SAC‐CI) method is briefly reviewed and applied to the excitation and ionization spectra of TiX4 (X=Br, I). The valence excited states of these molecules are investigated systematically and compared with the previous study on TiCl4. The experimental spectra are well reproduced and assigned by the SAC‐CI calculation including spin–orbit interaction of the ligand p atomic orbital (AO) and Ti d AO. Nine A1, ten A2, 20 E, and 30 T1 and T2 states are calculated for the excited states, and the oscillator strengths are distributed among the transitions to 30 T2 states, which cause the excitation spectra to be very complicated, especially for the TiI4 molecule. The ordering of the ionized states in the outer valence region is (1t1)−1<(3t2)−1<(1e)−1<(2t2)−1< (2a1)−1, which is the same as that of TiCl4. The spin–orbit splittings in the 2T2 states of TiBr4 and TiI4 are estimated to be smaller than those of the previous studies, and we propose a new assignment for the experimental photoelectron (PE) spectra.

1.
M. B. Robin, Higher Excited States of Polyatomic Molecules (Academic, New York, 1975), Vol. 2.
2.
L.
DiSipio
,
G.
DeMichelis
,
E.
Tondello
, and
L.
Oleari
,
Gazz. Chim. Ital.
96
,
1785
(
1966
).
3.
R. G.
Egdell
and
A. F.
Orchard
,
J. Chem. Soc. Faraday Trans. 2
74
,
485
(
1978
).
4.
J. C.
Green
,
M. L. H.
Green
,
P. J.
Joachim
,
A. F.
Orchard
, and
D. W.
Turner
,
Philos. Trans. R. Soc. London, Ser. A
268
,
111
(
1970
).
5.
H.
Nakatsuji
,
M.
Ehara
,
M. H.
Palmer
, and
M. F.
Guest
,
J. Chem. Phys.
97
,
2561
(
1992
).
6.
(a)
C. A.
Becker
,
C. J.
Ballhausen
, and
I.
Trabjerg
,
Theoret. Chim. Acta
355
,
13
(
1969
);
(b)
J. S.
Tse
,
Chem. Phys. Lett.
373
,
15
(
1981
);
(c)
A. A.
Inverson
and
B. R.
Russell
,
Spectrochimica Acta Part A
29
,
715
(
1973
);
(d)
A. E.
Foti
,
V. H.
Smith
,Jr.
, and
M. A.
Whitehead
,
Mol. Phys.
45
,
385
(
1982
);
(e)
W.
von Niessen
,
Inorg. Chem.
26
,
567
(
1987
);
(f)
G. M.
Bancroft
,
E.
Pellach
, and
J. S.
Tse
,
Inorg. Chem.
21
,
2950
(
1982
).
7.
(a)
Y.
Morino
and
U.
Uehara
,
J. Chem. Phys.
45
,
4543
(
1966
);
(b)
M. F. A.
Dove
,
J. A.
Creighton
, and
L. A.
Woodward
,
Spectrochim. Acta
18
,
267
(
1962
);
(c)
J. K.
Wilmshurst
,
J. Mol. Spectrosc.
5
,
343
(
1960
).
8.
H.
Nakatsuji
and
K.
Hirao
,
Chem. Phys. Lett.
47
,
569
(
1977
);
H.
Nakatsuji
and
K.
Hirao
,
J. Chem. Phys.
68
,
2053
(
1978
).
9.
H.
Nakatsuji
,
Chem. Phys. Lett.
59
,
362
(
1978
);
H.
Nakatsuji
,
67
,
329
(
1979
); ,
Chem. Phys. Lett.
H.
Nakatsuji
,
67
,
334
(
1979
).,
Chem. Phys. Lett.
10.
H.
Nakatsuji
,
Acta Chim. Hung.
129
,
719
(
1992
).
11.
H.
Nakatsuji
,
K.
Ohta
, and
K.
Hirao
,
J. Chem. Phys.
75
,
2952
(
1981
).
12.
H.
Nakatsuji
,
Chem. Phys.
75
,
425
(
1983
).
13.
H.
Nakatsuji
,
J. Chem. Phys.
80
,
3703
(
1984
).
14.
H.
Nakatsuji
and
S.
Saito
,
J. Chem. Phys.
91
,
6205
(
1989
).
15.
H.
Nakatsuji
and
M.
Ehara
,
J. Chem. Phys.
98
,
7179
(
1993
).
16.
D. J.
Thouless
,
Nucl. Phys.
21
,
225
(
1960
);
D. J.
Thouless
,
22
,
78
(
1961
).,
Nucl. Phys.
17.
K.
Hirao
,
J. Chem. Phys.
79
,
5000
(
1983
).
18.
K.
Hirao
and
H.
Nakatsuji
,
J. Comp. Phys.
45
,
246
(
1982
).
19.
H.
Nakatsuji
,
Chem. Phys. Lett.
177
,
331
(
1991
).
20.
H. Nakatsuji, program system for SAC and SAC-CI calculations, Program Library No. 146 (Y4/SAC), Data Processing Center of Kyoto University, 1985; Program Library SAC85, No. 1396, Computer Center of the Institute for Molecular Science, Okazaki, 1986.
21.
H. Nakatsuji, program system for exponentially generated wave functions for ground, excited, ionized, and electron attached states.
22.
A review of the SAC/SAC-CI studies for 1977–1991 was published in Ref. 10. For more recent studies, see references of
H.
Nakatsuji
,
M.
Ehara
, and
T.
Momose
,
J. Chem. Phys.
100
,
5821
(
1994
);
S.
Jitsuhiro
,
H.
Nakai
,
M.
Hada
, and
H.
Nakatsuji
,
J. Chem. Phys.
101
,
1029
(
1994
).,
J. Chem. Phys.
23.
H.
Nakatsuji
and
K.
Hirao
,
Int. J. Quantum Chem.
20
,
1301
(
1981
);
H.
Nakatsuji
and
K.
Hirao
,
Chem. Phys. Lett.
79
,
292
(
1981
);
H.
Nakatsuji
and
T.
Yonezawa
,
Chem. Phys. Lett.
87
,
426
(
1982
).,
Chem. Phys. Lett.
24.
O.
Kitao
and
H.
Nakatsuji
,
J. Chem. Phys.
87
,
1169
(
1987
).
25.
H.
Nakatsuji
,
M.
Komori
, and
O.
Kitao
,
Chem. Phys. Lett.
142
,
446
(
1987
).
26.
S.
Jitsuhiro
,
H.
Nakai
,
M.
Hada
, and
H.
Nakatsuji
,
J. Chem. Phys.
101
,
1029
(
1994
) and references cited therein.
27.
H.
Nakatsuji
,
M.
Ehara
, and
T.
Momose
,
J. Chem. Phys.
100
,
5821
(
1994
), and references cited therein.
28.
H.
Nakatsuji
,
J.
Ushio
, and
T.
Yonezawa
,
Can. J. Chem.
63
,
1857
(
1985
);
Y.
Mizukami
and
H.
Nakatsuji
,
J. Chem. Phys.
92
,
6084
(
1994
);
H.
Nakatsuji
and
M.
Ehara
,
Chem. Phys. Lett.
172
,
261
(
1990
).
29.
H.
Nakatsuji
and
M.
Hada
,
J. Am. Chem. Soc.
107
,
8264
(
1985
);
H.
Nakatsuji
and
M.
Hada
,
109
,
1902
(
1987
); ,
J. Am. Chem. Soc.
H.
Nakatsuji
,
Y.
Matsuzaki
, and
T.
Yonezawa
,
J. Chem. Phys.
88
,
5759
(
1984
);
H.
Nakatsuji
and
H.
Nakai
,
Chem. Phys. Lett.
174
,
283
(
1990
);
H.
Nakatsuji
and
H.
Nakai
,
J. Chem. Phys.
98
,
2423
(
1993
);
H.
Nakatsuji
,
R.
Kuwano
,
H.
Morita
, and
H.
Nakai
,
J. Mol. Catal.
82
,
211
(
1993
).
30.
J.
Geertsen
,
M.
Rittby
, and
R. J.
Bartlett
,
Chem. Phys. Lett.
164
,
57
(
1989
);
D. C.
Comeau
and
R. J.
Bartlett
,
Chem. Phys. Lett.
207
,
414
(
1993
); ,
Chem. Phys. Lett.
J. F.
Stanton
and
R. J.
Bartlett
,
J. Chem. Phys.
98
,
7029
(
1993
).
31.
D.
Mukherjee
and
P. K.
Mukherjee
,
Chem. Phys.
39
,
325
(
1979
).
32.
(a)
H.
Koch
and
P.
Jo/rgensen
,
J. Chem. Phys.
93
,
3333
(
1990
);
(b)
H.
Koch
,
H. J. A.
Jensen
,
P.
Jo/rgensen
, and
T.
Helgaker
,
J. Chem. Phys.
93
,
3345
(
1990
); ,
J. Chem. Phys.
(c)
H.
Koch
,
R.
Kobayashi
,
A. S.
de Merás
, and
P.
Jo/rgensen
,
J. Chem. Phys.
100
,
4393
(
1994
).,
J. Chem. Phys.
33.
Compare Eq. (7) with Eq. (1) of Ref. 31(b).
34.
S. Huzinaga, J. Andzelm, M. Klobukowski, E. Radzio-Andzelm, Y. Sakai, and H. Tatewaki, Gaussian Basis Sets for Molecular Calculations (Elsevier, Amsterdam, 1984).
35.
P. J.
Hay
and
W. R.
Wadt
,
J. Chem. Phys.
82
,
299
(
1985
).
36.
M. Dupuis, J. D. Watts, H. O. Viller, and G. J. B. Hurst, program system HONDO7, Program Library No. 544, Computer Center of the Institute for Molecular Science, 1989.
37.
(a)
H.
Nakatsuji
,
Y.
Matsuzaki
, and
T.
Yonezawa
,
J. Chem. Phys.
88
,
5759
(
1988
);
(b)
C. A.
Masmanidis
,
H. H.
Jaffe
, and
R. L.
Ellis
,
J. Phys. Chem.
79
,
2052
(
1975
);
(c)
S.
Kato
,
R. L.
Jaffe
,
A.
Komornicki
, and
K.
Morokuma
,
J. Chem. Phys.
78
,
4567
(
1983
).
38.
C. J. Ballhausen and H. B. Gray, Molecular Orbital Theory (Benjamin, New York, 1964).
39.
The 3 1A1, state is calculated in a very high energy region. In the SE-CI calculation with the active space of 12 highest occupied MOs and five lowest unoccupied MOs the 8 1T2 state is calculated at 8.78 eV, while the 3 1A1, state is calculated at 16.57 eV. Furthermore, a test calculation with the active space I indicates that the valence excited states with the A1, symmetry is located at 9.87 eV. We did not include this state in the present results because (1) Rydberg states exist from 7.4 eV and (2) this state will have small effect on the other states after including the spin–orbit interactions.
40.
C. E. Moore, Atomic Energy Levels (Nat. Bur. Stand. U.S. Government Printing Office, Washington, D.C., 1971), Vols. 1–3.
41.
J. S. Griffith, The Theory of Transition Metal Ions (Cambridge University, Cambridge, 1961).
42.
B. D.
Bird
and
P.
Day
,
J. Chem. Phys.
49
,
392
(
1968
).
This content is only available via PDF.
You do not currently have access to this content.