We apply ‘‘molecular dynamics with quantum transitions’’ (MDQT), a surface‐hopping method previously used only for electronic transitions, to proton transfer in solution, where the quantum particle is an atom. We use full classical mechanical molecular dynamics for the heavy atom degrees of freedom, including the solvent molecules, and treat the hydrogen motion quantum mechanically. We identify new obstacles that arise in this application of MDQT and present methods for overcoming them. We implement these new methods to demonstrate that application of MDQT to proton transfer in solution is computationally feasible and appears capable of accurately incorporating quantum mechanical phenomena such as tunneling and isotope effects. As an initial application of the method, we employ a model used previously by Azzouz and Borgis to represent the proton transfer reaction AHBAH+B in liquid methyl chloride, where the AHB complex corresponds to a typical phenol–amine complex. We have chosen this model, in part, because it exhibits both adiabatic and diabatic behavior, thereby offering a stringent test of the theory. MDQT proves capable of treating both limits, as well as the intermediate regime. Up to four quantum states were included in this simulation, and the method can easily be extended to include additional excited states, so it can be applied to a wide range of processes, such as photoassisted tunneling. In addition, this method is not perturbative, so trajectories can be continued after the barrier is crossed to follow the subsequent dynamics.

1.
R. N. Porter and L. M. Raff, in Dynamics of Molecular Collisions B, edited by W. H. Miller (Plenum, New York, 1976).
2.
M.
Karplus
and
G. A.
Petsko
,
Nature (London)
347
,
631
(
1990
).
3.
M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Clarendon, Oxford, 1987).
4.
J. C.
Tully
,
Catal. Lett.
9
,
205
(
1991
).
5.
R. P. Bell, The Proton in Chemistry, 2nd ed. (Cornell University, Ithaca, 1973).
6.
J. C.
Tully
and
R. K.
Preston
,
J. Chem. Phys.
55
,
562
(
1971
).
7.
W. H.
Miller
and
T. F.
George
,
J. Chem. Phys.
56
,
5637
(
1972
).
8.
J. R.
Stine
and
J. T.
Muckerman
,
J. Chem. Phys.
65
,
3975
(
1976
);
J. R.
Stine
and
J. T.
Muckerman
,
68
,
185
(
1978
); ,
J. Chem. Phys.
J. R.
Stine
and
J. T.
Muckerman
,
J. Phys. Chem.
91
,
459
(
1987
).
9.
G.
Parlant
and
E. A.
Gislason
,
J. Chem. Phys.
91
,
4416
(
1989
);
P. J.
Kuntz
,
J. Chem. Phys.
95
,
141
(
1991
);
P. J.
Kuntz
and
J. J.
Hogreve
,
J. Chem. Phys.
95
,
156
(
1991
).,
J. Chem. Phys.
10.
N. C.
Blais
and
D. G.
Truhlar
,
J. Chem. Phys.
79
,
1334
(
1983
);
N. C.
Blais
,
D. G.
Truhlar
, and
C. A.
Mead
,
J. Chem. Phys.
89
,
6204
(
1988
).,
J. Chem. Phys.
11.
J. C.
Tully
,
J. Chem. Phys.
93
,
1061
(
1990
).
12.
F. J.
Webster
,
P. J.
Rossky
, and
R. A.
Friesner
,
Comput. Phys. Commun.
63
,
494
(
1991
);
F. J.
Webster
,
J.
Schnitker
,
M. S.
Friedrichs
,
R. A.
Friesner
, and
P. J.
Rossky
,
Phys. Rev. Lett.
66
,
3172
(
1991
).
13.
M. F.
Herman
and
J. C.
Arce
,
Chem. Phys.
183
,
335
(
1994
).
14.
R. A.
Marcus
,
Faraday Symp. Chem. Soc.
10
,
60
(
1975
).
15.
A.
Warshel
,
J. Phys. Chem.
86
,
2218
(
1982
);
A.
Warshel
and
Z. T.
Chu
,
J. Chem. Phys.
93
,
4003
(
1990
).
16.
H.
Azzouz
and
D.
Borgis
,
J. Chem. Phys.
98
,
7361
(
1993
).
17.
D.
Borgis
,
G.
Tarjus
, and
H.
Azzouz
,
J. Phys. Chem.
96
,
3188
(
1992
);
D.
Borgis
,
G.
Tarjus
, and
H.
Azzouz
,
J. Chem. Phys.
97
,
1390
(
1992
).
18.
D.
Laria
,
G.
Ciccotti
,
M.
Ferrario
, and
R.
Kapral
,
J. Chem. Phys.
97
,
378
(
1992
).
19.
D. C.
Borgis
,
S.
Lee
, and
J. T.
Hynes
,
Chem. Phys. Lett.
162
,
19
(
1989
);
D.
Borgis
and
J. T.
Hynes
,
J. Chem. Phys.
94
,
3619
(
1991
);
D.
Borgis
and
J. T.
Hynes
,
Chem. Phys.
170
,
315
(
1993
).
20.
M.
Morillo
and
R. I.
Cukier
,
J. Chem. Phys.
92
,
4833
(
1990
).
21.
A.
Suárez
and
R.
Silbey
,
J. Chem. Phys.
94
,
4809
(
1991
).
22.
H. J. C.
Berendsen
and
J.
Mavri
,
J. Phys. Chem.
97
,
13464
(
1993
);
J.
Mavri
,
H. J. C.
Berendsen
, and
W. F.
van Gunsteren
,
J. Phys. Chem.
97
,
13469
(
1993
).
23.
J.
Lobaugh
and
G. A.
Voth
,
J. Chem. Phys.
100
,
3039
(
1994
);
G. A.
Voth
,
D.
Chandler
, and
W. H.
Miller
,
J. Chem. Phys.
91
,
7749
(
1989
).
24.
G. H.
Peslherbe
and
W. L.
Hase
,
J. Chem. Phys.
100
,
1179
(
1994
).
25.
A. O.
Caldeira
and
A. J.
Leggett
,
Ann. Phys.
149
,
374
(
1983
).
26.
D. G.
Truhlar
and
B. C.
Garrett
,
Annu. Rev. Phys. Chem.
35
,
159
(
1984
).
27.
S. M.
Valone
,
A. F.
Voter
, and
J. D.
Doll
,
Surf. Sci.
155
,
687
(
1985
).
28.
N.
Makri
and
W. H.
Miller
,
J. Chem. Phys.
91
,
4026
(
1989
).
29.
W. L.
Jorgensen
,
J. Phys. Chem.
87
,
5304
(
1983
).
30.
B.
Bigot
,
B. J.
Costa-Cabral
, and
J. L.
Rivail
,
J. Chem. Phys.
83
,
3083
(
1985
).
31.
F. F.
Martins Freitas
,
B. J. C.
Cabral
, and
F. M. S.
Silva Fernandes
,
J. Phys. Chem.
97
,
9470
(
1993
).
32.
O.
Steinhauser
,
Mol. Phys.
45
,
335
(
1982
).
33.
C. Cohen-Tannoudji, B. Diu, F. Laloë, Quantum Mechanics, Vol. II (Wiley, Paris, 1977), pp. 1192–1193.
34.
G. Arfken, Mathematical Methods for Physicists, 3rd ed. (Academic, Orlando, 1985), pp. 712–717.
35.
W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes in C (Cambridge University, Cambridge, 1988), pp. 112–123.
36.
A. Szabo and N. S. Ostlund, Modern Quantum Chemistry (McGraw-Hill, New York, 1989), pp. 142–145.
37.
B. T. Smith, J. M. Boyle, B. S. Garbow, Y. Ikebe, V. C. Klema, and C. B. Moler, Lecture Notes in Computer Science: Matrix Eigensystem Routines-EISPACK Guide (Springer, New York, 1976).
38.
H. C.
Andersen
,
J. Comput. Phys.
52
,
24
(
1983
).
39.
The component of velocity in the direction of the nonadiabatic coupling vector is reversed in this case because there is insufficient momentum to overcome the “Pechukas force” that takes the system from one state to another. This change of sign of the velocity, which is a basic element of the MDET and MDQT methods, was inadvertently omitted in the original description of the method in Ref. 11.
40.
W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical Recipes in C (Cambridge University, Cambridge, 1988), pp. 569–573.
41.
J. C.
Tully
,
Int. J. Quantum Chem. Quantum Chem. Symp.
25
,
299
(
1991
);
M. F.
Herman
,
J. Chem. Phys.
81
,
754
(
1984
).
42.
E. A.
Carter
,
G.
Ciccotti
,
J. T.
Hynes
, and
R.
Kapral
,
Chem. Phys. Lett.
156
,
472
(
1989
).
This content is only available via PDF.
You do not currently have access to this content.