The conventional Ewald expression for the electrostatic energy and forces is recast in a form that can be evaluated to high accuracy in order N log(N) steps using fast Fourier transforms. The fast Fourier Poisson method does not rely on interpolation approaches or Taylor/multipole expansions, and can be easily integrated with conventional molecular dynamics algorithms.

1.
H.
Schreiber
and
O.
Steinhauser
,
Biochemistry
31
,
5856
(
1992
).
2.
H.
Schreiber
and
O.
Steinhauser
,
Chem. Phys.
168
,
75
(
1992
).
3.
D.
York
,
T.
Darden
, and
L.
Pedersen
,
J. Chem. Phys.
99
,
8345
(
1993
).
4.
P.
Ewald
,
Ann. Phys. (Leipzig)
64
,
253
(
1921
).
5.
M. P. Allen and D. J. Tildesley, Computer Simulations of Liquids (Oxford University, New York, 1987).
6.
D. M.
Heyes
,
J. Chem. Phys.
74
,
1924
(
1981
).
7.
S. W.
De Leeuw
,
J. W.
Perram
, and
E. R.
Smith
,
Proc. R. Soc. London, Ser. A
373
,
27
(
1980
).
8.
E. R.
Smith
,
Proc. R. Soc. London Ser. A
375
,
475
(
1981
).
9.
J. W.
Perram
,
H. G.
Petersen
, and
S. W.
De Leeuw
,
Mol. Phys.
65
,
875
(
1988
).
10.
R. W. Hockney and J. W. Eastwood, Computer Simulation Using Particles (McGraw-Hill, New York, 1981).
11.
L.
Greengard
and
V.
Rokhlin
,
J. Comput. Phys.
73
,
325
(
1987
).
12.
K. E.
Schmidt
and
M. A.
Lee
,
J. Stat. Phys.
63
,
1223
(
1991
).
13.
J. A.
Board
, Jr.
,
J. W.
Causey
,
J. F.
Leathrum
, Jr.
,
A.
Windemuth
, and
K.
Schulten
,
Chem. Phys. Lett.
198
,
89
(
1992
).
14.
H.-Q.
Ding
,
N.
Karasawa
, and
W. A.
Goddard
III
,
J. Chem. Phys.
97
,
4309
(
1992
).
15.
F. S.
Lee
and
A.
Warshel
,
J. Chem. Phys.
97
,
3100
(
1992
).
16.
J.
Shimada
,
H.
Kaneko
, and
T.
Takada
,
J. Comput. Chem.
15
,
28
(
1994
).
17.
T.
Darden
,
D.
York
, and
L.
Pedersen
,
J. Chem. Phys.
98
,
10089
(
1993
).
18.
W.
Jorgensen
,
J.
Chandrasekhar
,
J.
Madura
,
R.
Impey
, and
M.
Klein
,
J. Chem. Phys.
79
,
926
(
1983
).
This content is only available via PDF.
You do not currently have access to this content.