Various NO‐reduction reactions on Pt(100) exhibit similar dynamical behavior, presumably due to an empty site requirement for NO dissociation. This motivates analysis of a lattice‐gas model which incorporates this feature, and which here is chosen to mimic the NO+CO reaction on Pt(100): both reactants adsorb at single empty sites, NO instantaneously dissociates given an adjacent empty site (and nitrogen adatoms thus formed are immediately removed), and adjacent CO and O instantaneously react. We also include desorption of adsorbed NO and CO, but no adspecies diffusion. At lower temperatures where desorption is absent, we show that poisoning occurs with the reaction rate decreasing as RCO2 ekt, where k≳0 except for equal reactant adsorption rates. The introduction of desorption produces reactive steady states, and (in different regimes) nonequilibrium poisoning transitions, critical points, and transitions to bistability.

1.
L. F.
Razon
and
R. A.
Schmitz
,
Catal. Rev. Eng. Sci.
28
,
89
(
1986
);
R. Imbihl, in Optimal Structures in Heterogeneous Reaction Systems, edited by P. J. Plath (Springer, Heidelberg, 1989);
G.
Ertl
,
Adv. Catal.
37
,
213
(
1990
).
2.
R.
Imbihl
,
Prog. Surf. Sci.
44
,
185
(
1993
).
3.
R. M.
Ziff
,
E.
Gulari
, and
Y.
Barshad
,
Phys. Rev. Lett.
50
,
2553
(
1986
);
J. W.
Evans
,
Langmuir
7
,
2514
(
1991
).
4.
M. W.
Lesley
and
L. D.
Schmidt
,
Chem. Phys. Lett.
102
,
459
(
1983
);
M. W.
Lesley
and
L. D.
Schmidt
,
Surf. Sci.
155
,
215
(
1985
);
S. B.
Schwartz
and
L. D.
Schmidt
,
Surf. Sci.
183
,
L269
(
1987
); ,
Surf. Sci.
S. B.
Schwartz
and
L. D.
Schmidt
,
206
,
169
(
1988
).,
Surf. Sci.
5.
Th.
Fink
,
J.-P.
Dath
,
M. R.
Bassett
,
R.
Imbihl
, and
G.
Ertl
,
Surf. Sci.
245
,
96
(
1991
);
Th.
Fink
,
J.-P.
Dath
,
R.
Imbihl
, and
G.
Ertl
,
J. Chem. Phys.
95
,
2109
(
1991
);
R.
Imbihl
,
Th.
Fink
, and
K.
Krischer
,
J. Chem. Phys.
96
,
6236
(
1992
).,
J. Chem. Phys.
6.
C. G.
Takoudis
and
L. D.
Schmidt
,
J. Phys. Chem.
87
,
958
,
964
(
1983
).
7.
T.
Katona
and
G. A.
Somorjai
,
J. Phys. Chem.
96
,
5465
(
1992
).
8.
S. J.
Lombardo
,
T.
Fink
, and
R.
Imbihl
,
J. Chem. Phys.
98
,
5526
(
1993
).
9.
S. H.
Oh
,
G. B.
Fisher
,
J. E.
Carpenter
, and
D. W.
Goodman
,
J. Catal.
100
,
360
(
1986
);
T.
Yamada
,
I.
Matsuo
,
J.
Nakamura
,
M.
Xie
,
H.
Hirano
,
Y.
Matsumoto
, and
K.
Tanaka
,
Surf. Sci.
231
,
304
(
1990
);
V.
Schmatloch
and
N.
Kruse
,
Surf. Sci.
269/270
,
488
(
1992
).,
Surf. Sci.
10.
R. M.
Ziff
and
K.
Fichthorn
,
Phys. Rev. B
34
,
2038
(
1986
).
11.
J. W.
Evans
and
T. R.
Ray
,
Phys. Rev. E
47
,
1018
(
1993
).
12.
P.
Meakin
and
D. J.
Scalapino
,
J. Chem. Phys.
87
,
731
(
1987
).
13.
E. V.
Albano
,
Phys. Rev. Lett.
69
,
656
(
1992
);
J.
Zhuo
and
S.
Redner
,
Phys. Rev. Lett.
70
,
2822
(
1993
).,
Phys. Rev. Lett.
14.
K.
Fichthorn
,
E.
Gulari
, and
R. M.
Ziff
,
Phys. Rev. Lett.
63
,
1527
(
1989
);
D.
Considine
,
S.
Redner
, and
H.
Takayasu
,
Phys. Rev. Lett.
63
,
2857
(
1989
); ,
Phys. Rev. Lett.
E.
Clement
,
P.
Leroux-Hugon
, and
L. M.
Sander
,
Phys. Rev. Lett.
67
,
1661
(
1991
); ,
Phys. Rev. Lett.
P. L.
Krapivsky
,
Phys. Rev. A
45
,
1067
(
1992
).
15.
D.
Stauffer
,
Phys. Rep.
54
,
1
(
1979
).
16.
P. L.
Leath
,
Phys. Rev. B
14
,
5046
(
1976
).
17.
J. W.
Evans
,
Rev. Mod. Phys.
65
,
1281
(
1993
). This desorptionless model for Pco = 0 constitutes a variant of “almost random filling”
[
J. W.
Evans
and
D. K.
Hoffman
,
J. Stat. Phys.
36
,
65
(
1984
)]. It can be solved exactly in ID to obtain θo = e−1/2 = 0.606 531 and θNO = 1−e−1/2 = 0.393 469 when t = ∞
18.
A state with one c(2×2) sublattice completely occupied by NO(ad);
and the other by any mixture of O(ad) and CO(ad), is adsorbing.
19.
K.
Yaldram
and
M. A.
Khan
,
J. Catal.
131
,
369
(
1991
);
B. J.
Brosilow
and
R. M.
Ziff
,
J. Catal.
136
,
275
(
1992
).,
J. Catal.
20.
B.
Meng
,
W. H.
Weinberg
, and
J. W.
Evans
,
Phys. Rev. E
48
,
3577
(
1993
).
21.
For Pco = 0, one finds that θco(dNOñ0) = θO(dNO = 0) and θNO(dNOñ0) = θNO(dNO = 0)/(1+dNO). This follows since the adsorption-desorption kinetics of NO on isolated sites surrounded by O(ad) are dynamically disconnected from the evolution of the rest of the adlayer (and are Langmuirian).
22.
Note that the limit dNO→∞ also corresponds to a well defined process with θNO = 0. This limit corresponds to a modified A+B reaction model, where A adsorption requires single empty sites, and B adsorption requires adjacent empty pairs.
23.
Such a decrease in θNO would be somewhat masked by the rapid increase of θS near the transition (see Fig. 6).
24.
Let DNO denote the dissociation rate for NO(ad), so then d/dt θNO = PNOS−DNO−dNOθNO. In a steady state, one thus has S = [dNOθNO+DNO]/PNO→0, if θNO (and thus DNO) vanishes, so F→0 if θS↛0. In the simulations, F does not reach zero since the system poisons slightly before θNO reaches zero (at PNO = 0.5.
25.
J.
Kohler
and
D.
ben-Avraham
,
J. Phys. A
24
,
L621
(
1991
);
E. V.
Albano
,
J. Stat. Phys.
69
,
643
(
1992
).
26.
I.
Jensen
and
R.
Dickman
,
Phys. Rev. E
48
,
1710
(
1993
).
27.
D.
Vlachos
,
L. D.
Schmidt
, and
R.
Aris
,
Surf. Sci.
249
,
248
(
1991
).
28.
B. J.
Brosilow
and
R. M.
Ziff
,
Phys. Rev. A
46
,
4534
(
1992
);
E. V.
Albano
,
Appl. Phys. A
54
,
2159
(
1992
);
J. W.
Evans
,
J. Chem. Phys.
97
,
572
(
1992
);
Trends in Statistical Physics (Research Trends, India, 1994).
29.
T.
Tome
and
R.
Dickman
,
Phys. Rev. E
47
,
948
(
1993
).
30.
Comparison of theoretical and experimental studies of excited pulse propagation indicates that hop rates for diffusion are O(1010) s−1 at 410 K. See
G.
Veser
and
R.
Imbihl
,
J. Chem. Phys.
96
,
7155
(
1992
);
J. W.
Evans
,
H. H.
Madden
, and
R.
Imbihl
,
J. Chem. Phys.
96
,
4805
(
1992
).,
J. Chem. Phys.
This content is only available via PDF.
You do not currently have access to this content.