A rigorous theory is formulated for the reversing‐pulse electric birefringence (RPEB) for the ionized macroion of cylindrical symmetry, according to the idea of the coupled rotational (with the molecular relaxation time τθ) and ion‐atmosphere dynamics of rodlike macroion, developed previously by Szabo etal. [J. Chem. Phys. 85, 7472 (1986)]. The present theory is based on the interaction of applied electric pulse with two electric dipole moments of the macroion; one is due to the ion‐atmosphere polarizability α3 with a single relaxation time τI for the distortion of ion‐atmosphere along the longitudinal axis, as originally proposed, and the other is newly considered as being due to the intrinsic molecular, or instantaneously field‐induced, polarizability anisotropy Δα′ between the longitudinal and transverse axes of the macroion. The RPEB expressions were derived with the electric and hydrodynamic parameters (α3/Δα′ and τIθ) for the low‐field region. Theoretical curves were calculated with appropriate values to those parameters. The curves show some new features, i.e., either a maximum or a minimum in the buildup and reverse processes, that were not revealed in the Szabo etal. theory. The present theory was used to analyze an experimental RPEB signal of montmorillonite clay suspension. The contribution of the permanent electric dipole moment of the disklike clay particle to field orientation was ruled out.

1.
Molecular ElectroOptics, edited by C. T. O’Konski (Marcel Dekker, New York, 1976 and 1978), parts 1 and 2.
2.
P. S. Stoylov, Colloid ElectroOptics (Academic, New York, 1991).
3.
Colloid and Molecular ElectroOptics 1991, edited by B. R. Jennings and P. S. Stoylov (IOP, Bristol, 1992).
4.
E. Fredericq and C, Houssier, Electric Dichroism and Electric Birefringence (Clarendon, Oxford, 1973).
5.
E.
Charney
,
Q. Rev. Biophys.
21
,
1
(
1988
).
6.
C. T.
O’Konski
and
A. J.
Haltner
,
J. Am. Chem. Soc.
78
,
3604
(
1956
).
7.
C. T.
O’Konski
and
R. M.
Pytkowicz
,
J. Am. Chem. Soc.
79
,
4815
(
1957
).
8.
C. T.
O’Konski
and
A. J.
Haltner
,
J. Am. Chem. Soc.
79
,
5634
(
1957
).
9.
I.
Tinoco
, Jr.
and
K.
Yamaoka
,
J. Phys. Chem.
63
,
423
(
1959
).
10.
H.
Takezoe
and
H.
Yu
,
Biochem.
20
,
5275
(
1981
).
11.
H.
Takezoe
and
H.
Yu
,
Biophys. Chem.
13
,
49
(
1981
).
12.
K.
Yamaoka
and
K.
Matsuda
,
J. Phys. Chem.
89
,
2779
(
1985
).
13.
A.
Szabo
,
M.
Haleem
, and
D.
Eden
,
J. Chem. Phys.
85
,
7472
(
1986
).
14.
F. Oosawa, Polyelectrolytes (Marcel Dekker, New York, 1971), Chap. 5, pp. 51–70.
15.
C. T.
O’Konski
,
H.
Yoshioka
, and
W. H.
Orttung
,
J. Phys. Chem.
63
,
1558
(
1959
).
16.
M. J.
Shah
,
J. Phys. Chem.
67
,
2215
(
1963
).
17.
K.
Yamaoka
,
R.
Sasai
, and
N.
Ikuta
,
Chem. Lett.
563
(
1994
).
18.
K.
Yamaoka
,
S.
Yamamoto
, and
K.
Ueda
,
J. Phys. Chem.
89
,
5192
(
1985
).
19.
K.
Yamaoka
,
S.
Yamamoto
,
M.
Kimura
, and
I.
Kosako
,
Polym. J.
23
,
1443
(
1991
).
This content is only available via PDF.
You do not currently have access to this content.