We present a comparison of the predictions of mean field density functional theory with recent Monte Carlo simulation results for adsorption from a binary liquid mixture in contact with a wall. The symmetric liquid mixture under consideration exhibits liquid–liquid immiscibility with an upper critical solution temperature and the simulation results are consistent with a first order wetting transition with an accompanying prewetting line. The density functional theory gives quite good predictions of the wetting phase diagram for the system when the effect of errors in the bulk thermodynamic properties is removed. However, the composition distribution and adsorption isotherms show significant deviations reflecting the inability of the mean field theory to account correctly for the composition correlations in the system.

1.
Y.
Fan
,
J. E.
Finn
, and
P. A.
Monson
,
J. Chem. Phys.
99
,
8238
(
1993
).
2.
J. E.
Finn
and
P. A.
Monson
,
Phys. Rev. A
39
,
6402
(
1989
).
3.
C.
Ebner
and
W. F.
Saam
,
Phys. Rev. Lett.
38
,
1486
(
1977
).
4.
For a comprehensive review of density functional theories of inhomogeneous fluids see R. Evans, in Inhomogeneous Fluids, edited by D. Henderson (Dekker, New York, 1993).
5.
J. W.
Cahn
,
J. Chem. Phys.
66
,
3667
(
1977
).
6.
There are several reviews on wetting transitions, including
M. R.
Moldover
and
J. W.
Schmidt
,
Physica D
12
,
351
(
1984
);
S. Dietrich, in Phase Transitions and Critical Phenomena, edited by C. Domb and J. L. Lebowitz, (Academic, New York, 1988), Vol. 12, p. 1;
D. Sullivan and M. M. Telo da Gama, in Fluid Interfacial Phenomena, edited by C. A. Croxton (Wiley, New York, 1986), p. 45.
7.
M. M.
Telo da Gama
and
R.
Evans
,
Mol. Phys.
48
,
687
(
1983
);
I.
Had-jiagapiou
and
R.
Evans
,
Mol. Phys.
54
,
383
(
1985
).
8.
J. E.
Rutledge
and
P.
Taborek
,
Phys. Rev. Lett.
69
,
937
(
1992
);
E.
Cheng
,
G.
Mistura
,
H. C.
Lee
,
M. H. W.
Chan
,
M. W.
Cole
,
C.
Carraro
,
W. F.
Saam
, and
F.
Toigo
,
Phys. Rev. Lett.
70
,
1854
(
1993
).
9.
H.
Kellay
,
D.
Bonn
, and
J.
Meunier
,
Phys. Rev. Lett.
71
,
2607
(
1993
).
10.
E.
Kierlik
and
M. L.
Rosinberg
,
Phys. Rev. A
42
,
3382
(
1990
);
E.
Kierlik
and
M. L.
Rosinberg
,
44
,
5025
(
1991
).,
Phys. Rev. A
11.
S.
Phan
,
E.
Kierlik
,
M. L.
Rosinberg
,
B.
Bildstein
, and
G.
Kahl
,
Phys. Rev. E
48
,
618
(
1993
).
12.
Y.
Rosenfeld
,
Phys. Rev. Lett.
63
,
980
(
1989
).
13.
Y.
Fan
, and
P. A.
Monson
,
J. Chem. Phys.
99
,
6897
(
1993
).
14.
P. H.
van Konynenburg
and
R.
Scott
,
Philos. Trans.
298
,
495
(
1980
).
15.
J. D.
Weeks
,
D.
Chandler
, and
H. C.
Andersen
,
J. Chem. Phys.
54
,
5237
(
1971
).
16.
J. A.
Barker
and
D.
Henderson
,
J. Chem. Phys.
47
,
4714
(
1967
).
17.
E.
Velasco
and
P.
Tarazona
,
J. Chem. Phys.
91
,
7916
(
1989
).
18.
E.
Velasco
and
P.
Tarazona
,
Phys. Rev. A
42
,
2454
(
1990
).
19.
J. E.
Finn
and
P. A.
Monson
,
Phys. Rev. A
42
,
2458
(
1990
).
20.
E.
Kierlik
,
M. L.
Rosinberg
,
J. E.
Finn
, and
P. A.
Monson
,
Mol. Phys.
75
,
1435
(
1992
).
This content is only available via PDF.
You do not currently have access to this content.