The ionization potentials of the transient species CH3CH2O, CH3CHOH, and CH2CH2OH (generated by the F+ethanol reactions) are measured by photoionization mass spectrometry: I.P.(CD3CD2O)=10.29±0.08 eV (tentative), I.P.(CH3CHOH)<6.85 eV, and I.P.(CD2CH2OH) ≤8.35±0.06 eV. The latter results in a cation of uncertain structure. These reactions also generate vinyl alcohol (adiabatic I.P.=9.33±0.01 eV) and acetaldehyde. A redetermined appearance potential of CH3CHOH+ from ethanol enables one to infer the proton affinity of acetaldehyde to be ≥183.8±0.2 kcal/mol and an α (C–H) bond energy in ethanol ≳91.1 kcal/mol (0 K). The appearance potential of m/e=45 ion from bromoethanol is interpreted as formation of a C2H5O+ isomer having the oxirane structure, with ΔHf00 of ∼173.9 kcal/mol, consistent with earlier alternative measurements. A second increase in the m/e=45 ion yield curve from ethanol is interpreted as formation of this same isomer. This interpretation, and an alternative cycle, lead to a β (C–H) bond energy in ethanol of 98±2 kcal/mol. The implication of the current results to the dynamics of dissociation of ethanol cations is discussed.

1.
Z. B.
Alfassi
and
D. M.
Golden
,
J. Phys. Chem.
76
,
3314
(
1972
).
2.
D. F.
McMillen
and
D. M.
Golden
,
Annu. Rev. Phys. Chem.
33
,
493
(
1982
).
3.
S. G.
Lias
,
J. E.
Bartmess
,
J. F.
Liebman
,
J. L.
Holmes
,
R. D.
Levin
, and
W. G.
Mallard
,
J. Phys. Chem. Ref. Data
17
, Suppl. No.
1
(
1988
).
4.
K. M.
Ervin
,
S.
Gronert
,
S. E.
Barlow
,
M. K.
Gilles
,
A. G.
Harrison
,
V. M.
Bierbaum
,
C. H.
DePuy
,
W. C.
Lineberger
, and
G. B.
Ellison
,
J. Am. Chem. Soc.
112
,
5750
(
1990
).
5.
E. J.
Hintsa
,
X.
Zhao
, and
Y. T.
Lee
,
J. Chem. Phys.
92
,
2280
(
1990
).
6.
S. P.
Sapers
and
W. P.
Hess
,
J. Chem. Phys.
97
,
3126
(
1992
).
7.
F. P.
Tully
,
Chem. Phys. Lett.
143
,
510
(
1988
);
F. P.
Tully
,
96
,
148
(
1983
).,
Chem. Phys. Lett.
8.
B. J.
Smith
and
L.
Radom
,
J. Am. Chem. Soc.
115
,
4885
(
1993
).
9.
B. C. Cox, dissertation, Liverpool, cited by Koch and Lindholm (Ref. 11).
10.
K. M. A.
Refaey
and
W. A.
Chupka
,
J. Chem. Phys.
48
,
5205
(
1968
).
11.
H.
von Koch
and
E.
Lindholm
,
Ark. Phys.
19
,
123
(
1960
).
12.
B.
Brehm
,
V.
Fuchs
, and
P.
Kebarle
,
Int. J. Mass Spectrom. Ion Phys.
6
,
279
(
1971
).
13.
D. J.
Bogan
and
F. L.
Nesbitt
,
J. Phys. Chem.
98
,
1151
(
1994
).
14.
S. T.
Gibson
,
J. P.
Greene
, and
J.
Berkowitz
,
J. Chem. Phys.
83
,
4319
(
1985
);
J.
Berkowitz
,
J. P.
Greene
,
H.
Cho
, and
B.
Ruscic
,
J. Chem. Phys.
86
,
1235
(
1987
).,
J. Chem. Phys.
15.
R. H.
Nobes
,
W. P.
Rodwell
,
W. J.
Bouma
, and
L.
Radom
,
J. Am. Chem. Soc.
103
,
1913
(
1981
).
16.
P. C.
Haarhoff
,
Mol. Phys.
7
,
105
(
1963
).
17.
L. V. Gurvich, I. V. Veyts, and C. B. Alcock, Thermodynamic Properties of Individual Substances (Hemisphere, New York, 1989), Vol. 1;
ibid (Hemisphere, New York, 1991), Vol. 2.
18.
D.
Van Raalte
and
A. G.
Harrison
,
Can. J. Chem.
41
,
3118
(
1963
).
19.
B. G.
Keyes
and
A. G.
Harrison
,
Organic Mass Spectrosc.
9
,
221
(
1974
).
20.
B.
Ruscic
and
J.
Berkowitz
,
J. Phys. Chem.
97
,
11451
(
1993
).
21.
E.
Tschuikow-Roux
and
S.
Paddison
,
Int. J. Chem. Kinet.
19
,
15
(
1987
).
22.
E.
Tschuikow-Roux
,
F.
Faraji
,
S.
Paddison
,
J.
Niedzielski
, and
K.
Miyokawa
,
J. Phys. Chem.
92
,
1488
(
1988
).
23.
H.
Thomassen
,
S.
Samdal
, and
K.
Hedberg
,
J. Phys. Chem.
97
,
4004
(
1993
).
24.
J.
Berkowitz
and
H.
Cho
,
J. Chem. Phys.
90
,
1
(
1989
);
J.
Berkowitz
,
J. P.
Greene
,
H.
Cho
, and
G. L.
Goodman
,
J. Phys. B
20
,
2647
(
1987
).
25.
J.
Berkowitz
,
J. P.
Greene
,
H.
Cho
, and
B.
Ruscic
,
J. Chem. Phys.
86
,
1235
(
1987
).
26.
B.
Ruscic
and
J.
Berkowitz
,
J. Chem. Phys.
95
,
2416
(
1991
).
27.
G. Y.
Matti
,
O. I.
Osman
,
J. E.
Upham
,
R. J.
Suffolk
, and
H. W.
Kroto
,
J. Electron. Spectrosc.
49
,
195
(
1989
).
28.
A. D.
Walsh
,
Proc. R. Soc. London Ser. A
185
,
176
(
1946
).
29.
J. L.
Holmes
and
F. P.
Lossing
,
J. Am. Chem. Soc.
104
,
2648
(
1982
).
30.
F.
Turecek
and
V.
Hanus
,
Org. Mass Spectrom.
19
,
423
(
1984
).
31.
M.
Iraqi
,
I.
Pri-Bar
, and
C.
Lifshitz
,
Org. Mass Spectrum.
21
,
661
(
1986
).
32.
M.
Mautner
and
L. W.
Sieck
,
J. Am. Chem. Soc.
113
,
4448
(
1991
).
33.
B. H.
Solka
and
M. E.
Russell
,
J. Phys. Chem.
78
,
1268
(
1974
).
34.
J. L.
Beauchamp
and
R. C.
Dunbar
,
J. Am. Chem. Soc.
92
,
1477
(
1970
).
35.
W. J.
Bouma
,
R. H.
Nobes
, and
L.
Radom
,
Org. Mass Spectrom.
17
,
315
(
1982
).
36.
B.
Ruscic
and
J.
Berkowitz
,
J. Chem. Phys.
95
,
4033
(
1991
).
37.
L. A. Curtiss, D. L. Lucas, and J. A. Pople, J. Chem. Phys. (to be published).
38.
J. M.
Williams
and
W. H.
Hamill
,
J. Chem. Phys.
49
,
4467
(
1968
).
39.
M. J.
Travers
,
D. C.
Cowles
, and
G. B.
Ellison
,
Chem. Phys. Lett.
164
,
449
(
1989
).
40.
See, e.g.,
J.
Berkowitz
,
G. B.
Ellison
, and
D.
Gutman
,
J. Phys. Chem.
98
,
2744
(
1994
).
41.
Y.
Niwa
,
T.
Nishimura
, and
T.
Tsuchiya
,
Int. J. Mass Spectrom. Ion Phys.
42
,
91
(
1982
).
42.
R. H.
Staley
,
R. R.
Corderman
,
M. S.
Foster
, and
J. L.
Beauchamp
,
J. Am. Chem. Soc.
96
,
1260
(
1974
).
This content is only available via PDF.
You do not currently have access to this content.