Motivated by practical issues that pertain to polymer adhesion, we consider the equilibrium behavior of a dilute solution of ideal A–B random block copolymers confined between two solid surfaces. We develop a general theory for the situation wherein the A–A, B–B, and A–B intersegment interactions are different, and furthermore, the A and B segments interact differently with the solid surfaces. Random block copolymers constitute a class of materials wherein a quenched disorder (the sequence distribution) is carried by the fluid whose statistical properties are of interest. In our theory, we perform quenched disorder averages using the replica trick. The nonlocal terms in our action functional are decoupled by introducing a set of random fields. The resulting equations for the propagator are analyzed within the framework of eigenfunction expansions. Since we consider long chains in confined geometries, we invoke the ground state approximation. We also carry out the functional integrals over the random fields using saddle points.

Our theory does not treat the segment–surface interactions within a mean field approximation. Our analysis leads to a set of nonlinear self‐consistent‐field equations. We have solved our general equations numerically for a particular problem. In order to isolate and highlight the effects of dissimilar segment–surface interactions, we consider a case wherein the intersegment interactions are all alike (of the excluded volume type), while the A segments are attracted to the solid surfaces and the B units are repelled. For this specific problem we find that, above a threshold value of the fraction of attractive segments, significant microphase ordering is induced by the surface. This leads to damped oscillations in the composition profile. This onset of significant surface‐induced composition fluctuations is accompanied by an ‘‘adsorption–desorption transition’’ which corresponds to a qualitative change in the shape of the total segment density profile. These and other results are discussed and the experimentally testable consequences of our predictions are elucidated. Our results are in agreement with recent simulation studies. We suggest specific experiments that may shed further light on the physical phenomena revealed by our calculations.

1.
S. Wu, Polymer Interface and Adhesion (Dekker, New York, 1982).
2.
J. M. H. M.
Scheutjens
and
G. J.
Fleer
,
J. Phys. Chem.
83
,
1619
(
1979
).
3.
P. G.
deGennes
,
Adv. Colloid Interface Sci.
27
,
189
(
1987
).
4.
M.
Cohen-Stuart
,
T.
Cosgrove
, and
B.
Vincent
,
Adv. Colloid Interface Sci.
24
,
143
(
1986
).
5.
E.
Eisenreigler
,
K.
Kremer
, and
K.
Binder
,
J. Chem. Phys.
77
,
6296
(
1982
).
6.
D. N.
Theodorou
,
Macromolecules
21
,
1391
(
1988
).
7.
G. H.
Fredrickson
,
Macromolecules
20
,
2535
(
1987
).
8.
G.
Hadziioannou
,
S.
Patel
,
S.
Granick
, and
M.
Tirrell
,
J. Am. Chem. Soc.
108
,
2869
(
1986
).
9.
H.
Hasegawa
and
T.
Hashimoto
,
Macromolecules
18
,
599
(
1985
).
10.
P.
Frantz
and
S.
Granick
,
Phys. Rev. Lett.
66
,
899
(
1991
).
11.
M. D.
Whitmore
and
J.
Noolandi
,
Macromolecules
23
,
3321
(
1990
).
12.
S. H.
Anastasiadis
,
T. P.
Russell
,
S. K.
Satija
, and
C.
Majkrzak
,
Phys. Rev. Lett.
62
,
1852
(
1989
);
S. H.
Anastasiadis
,
T. P.
Russell
,
S. K.
Satija
, and
C.
Majkrzak
,
J. Chem. Phys.
92
,
5677
(
1990
).
13.
H.
Leidheiser
, Jr.
and
P. D.
Deck
,
Science
241
,
1176
(
1988
).
14.
J. J. Pireaux, M. Vermearsch, N. Degosserie, Y. Novis, M. Chtaib, and R. Caudano, in Adhesion and Friction, edited by M. Grunze and H. Kreuzer (Springer, Berlin, 1989).
15.
I.
Bitsanis
and
G.
Hadziioannou
,
J. Chem. Phys.
92
,
3827
(
1990
).
16.
P. G. deGennes, in New Trends in Physics and Physical Chemistry of Polymers, edited by L. H. Lee (Plenum, New York, 1990).
17.
J. M.
Burkstrand
,
Am. Chem. Soc. Symp. Ser.
162
,
339
(
1981
).
18.
A. R.
Rossi
,
P. N.
Sanda
,
B. D.
Silverman
, and
P. S.
Ho
,
Organometallics
6
,
580
(
1987
).
19.
K.
Konstandinidis
,
B.
Thakkar
,
L.
Potts
,
A. K.
Chakraborty
,
J. F.
Evans
, and
M.
Tirrell
,
Langmuir
8
,
1307
(
1992
).
20.
A. K.
Chakraborty
,
H. T.
Davis
, and
M.
Tirrell
,
J. Polym. Sci.: Polym. Chem. Ed.
28
,
3185
(
1990
).
21.
J. S.
Shaffer
,
A. K.
Chakraborty
,
J. L.
Martins
,
H. T.
Davis
, and
M.
Tirrell
,
J. Chem. Phys.
95
,
8616
(
1991
).
22.
A. K.
Chakraborty
,
J. S.
Shaffer
, and
P. M.
Adriani
,
Macromolecules
24
,
5226
(
1991
).
23.
A. K.
Chakraborty
and
P. M.
Adriani
,
Macromolecules
25
,
2470
(
1992
).
24.
P. M.
Adriani
and
A. K.
Chakraborty
,
J. Chem. Phys.
98
,
4263
(
1993
).
25.
J. S.
Shaffer
and
A. K.
Chakraborty
,
Macromolecules
26
,
1120
(
1993
).
26.
H. E.
Johnson
and
S.
Granick
,
Science
255
,
966
(
1992
).
27.
S.
Ponce
,
D.
Garnet
, and
H. P.
Schreiber
,
J. Coat. Technol.
26
,
37
(
1985
).
28.
D.
Hill
,
T.
Hasegawa
, and
M. M.
Denn
,
J. Rheol.
34
,
891
(
1990
).
29.
F. S.
Bates
,
Science
251
,
898
(
1991
).
30.
Developments in Block Copolymers, edited by I. Goodman (Applied Science, New York, 1982 and 1985), Vols. I and II.
31.
F. S.
Bates
and
G. H.
Fredrickson
,
Annu. Rev. Phys. Chem.
41
,
525
(
1990
).
32.
E. L.
Thomas
,
D. C.
Anderson
,
C. S.
Henkee
, and
D.
Hoffman
,
Nature
334
,
598
(
1988
).
33.
G. H.
Fredrickson
and
E.
Helfand
,
J. Chem. Phys.
87
,
697
(
1987
).
34.
L.
Leibler
,
Macromolecules
13
,
1602
(
1980
).
35.
K. M.
Hong
and
J.
Noolandi
,
Macromolecules
16
,
1083
(
1983
).
36.
M. K.
Kosmas
and
K. F.
Freed
,
J. Chem. Phys.
69
,
3647
(
1978
);
J. F.
Joanny
,
L.
Leibler
, and
R. C.
Ball
,
J. Chem. Phys.
81
,
4640
(
1984
); ,
J. Chem. Phys.
T.
Ohta
and
K.
Kawasaki
,
Macromolecules
19
,
2621
(
1986
).
37.
J.
Melenkevitz
and
M.
Muthukumar
,
Macromolecules
24
,
4199
(
1991
).
38.
M. D.
Gehlsen
,
K.
Almdal
, and
F. S.
Bates
,
Macromolecules
25
,
939
(
1992
).
39.
M.
Olivera de la Cruz
,
A. M.
Mayes
, and
B. W.
Swift
,
Macromolecules
25
,
944
(
1992
).
40.
J. D.
Vavsour
and
M. D.
Whitmore
,
Macromolecules
26
,
7070
(
1993
).
41.
H.
Benoit
and
G.
Hadziioannou
,
Macromolecules
21
,
1449
(
1988
).
42.
A. M.
Mayes
and
M.
Olivera de la Cruz
,
J. Chem. Phys.
91
,
7228
(
1989
).
43.
F. S.
Bates
,
J. H.
Rosedale
,
G. H.
Fredrickson
, and
C. J.
Glinka
,
Phys. Rev. Lett.
61
,
2229
(
1988
).
44.
K.
Almdal
,
J. H.
Rosedale
,
F. S.
Bates
,
G. D.
Wignall
, and
G. H.
Fredrickson
,
Phys. Rev. Lett.
65
,
1112
(
1990
).
45.
G. H.
Fredrickson
and
S. T.
Milner
,
Phys. Rev. Lett.
67
,
835
(
1991
).
46.
G. H.
Fredrickson
,
S. T.
Milner
, and
L.
Leibler
,
Macromolecules
25
,
6341
(
1992
).
47.
E. I.
Shaknovich
and
A. M.
Gutin
,
J. Phys. (Fr.)
50
,
1843
(
1989
).
48.
C. D.
Sfatos
,
A. M.
Gutin
, and
E. I.
Shaknovich
,
Phys. Rev. E
48
,
465
(
1993
).
49.
T.
Garel
and
H.
Orland
,
Europhys. Lett.
6
,
597
(
1988
).
50.
A.
Nesarikar
and
M.
Olivera de la Cruz
,
J. Chem. Phys.
98
,
7385
(
1993
).
51.
T.
Garel
and
H.
Orland
,
Europhys. Lett.
6
,
307
(
1988
).
52.
A. V.
Dobrynin
and
I. Ya.
Erukhimovich
,
JETP Lett.
53
,
570
(
1991
).
53.
S. F.
Edwards
and
M.
Muthukumar
,
J. Chem. Phys.
89
,
2435
(
1988
).
54.
J. D.
Honeycutt
and
D.
Thirumalai
,
J. Chem. Phys.
90
,
4542
(
1989
).
55.
D.
Wu
,
K.
Hui
, and
D.
Chandler
,
J. Chem. Phys.
96
,
835
(
1992
).
56.
M. E.
Cates
and
R. C.
Ball
,
J. Phys. (Fr.)
49
,
2009
(
1988
).
57.
A. K.
Chakraborty
,
D.
Bratko
, and
D.
Chandler
,
J. Chem. Phys.
100
,
1528
(
1994
).
58.
J. P.
Bouchaud
and
A.
Georges
,
Phys. Rep. C
195
,
127
(
1990
).
59.
D. S.
Fisher
,
D.
Freidan
,
Z.
Qui
,
S. T.
Shenker
, and
S. H.
Shenker
,
Phys. Rev. A
31
,
3841
(
1985
).
60.
D. Chandler, in Les Houches, Part I, Liquids, Freezing, and the Glass Transition, edited by D. Levesque, J. P. Hansen, and J. Zinn-Justin (Elsevier, North-Holland, 1991), p. 193.
61.
P. W.
Anderson
,
Phys. Rev.
109
,
1492
(
1958
).
62.
K.
Binder
and
A. P.
Young
,
Rev. Mod. Phys.
58
,
801
(
1986
).
63.
M. Mezard, G. Parisi, and M. A. Virasoro, Spin Glass Theory and Beyond (World Scientific, Teaneck, NJ, 1987).
64.
R. P.
Feynman
and
F. L.
Vernon
, Jr.
,
Ann. Phys. (NY)
24
,
118
(
1963
).
65.
R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals (McGraw-Hill, New York, 1965).
66.
S. F.
Edwards
and
P. W.
Anderson
,
J. Phys. F
5
,
965
(
1975
).
67.
E. I.
Shaknovich
and
A. M.
Gutin
,
Biophys. Chem.
34
,
187
(
1989
).
68.
E. I.
Shaknovich
and
A. M.
Gutin
,
J. Phys. A: Math. Gen.
22
,
1647
(
1989
).
69.
E. I. Shaknovich, Phys. Rev. Lett. (in press).
70.
A.
Sali
,
E. I.
Shaknovich
, and
M.
Karplus
,
Nature
369
,
248
(
1994
).
71.
C. M.
Marques
and
J. F.
Joanny
,
Macromolecules
23
,
268
(
1990
).
72.
T.
Cosgrove
,
N. A.
Finch
, and
J. R. P.
Webster
,
Macromolecules
23
,
3353
(
1990
).
73.
G. Odian, Principles of Polymerization (Wiley-Interscience, New York, 1981).
74.
K.
Freed
,
Adv. Chem. Phys.
22
,
1
(
1972
).
75.
J. W. Negele and H. Orland, Quantum Many-Particle Systems (Addison-Wesley, New York, 1992).
76.
P. G. DeGennes, Scaling Concepts in Polymer Physics (Cornell University Press, Ithaca, NY, 1979).
77.
F. W. Wiegel, Introduction to Path Integral Methods in Physics and Polymer Science (World Scientific, Singapore, 1986).
78.
D.
Chandler
and
P.
Wolynes
,
J. Chem. Phys.
74
,
4078
(
1981
).
79.
R. P. Feynman, Statistical Mechanics (Addison-Wesley, Reading, MA, (1972).
80.
C. Cohen-Tannoudji, B. Diu, and F. Laloe, Quantum Mechanics (Wiley-Interscience, New York, 1977).
81.
R. G. Parr and W. Yang, Density Functional Theory of Atoms and Molecules (Oxford University Press, New York, 1989).
82.
B. Carnahan, H. A. Luther, and J. O. Wilkes, Applied Numerical Methods (Wiley, New York, 1969).
83.
T.
Cosgrove
,
T. C.
Heath
,
K.
Ryan
, and
T. L.
Crowley
,
Macromolecules
20
,
2879
(
1987
).
84.
J. N.
Israelachvili
and
D.
Tabor
,
Nature
241
,
148
(
1973
).
85.
J. S. Shaffer (to be published).
86.
N. Balsara (private communication).
87.
D. A.
Tirrell
,
M. J.
Fournier
, and
T. L.
Mason
,
Curr. Opinions Str. Biol.
1
,
638
(
1991
).
88.
M. W.
Kim
and
T. C.
Chung
,
J. Colloid Interface Sci.
124
,
365
(
1988
).
This content is only available via PDF.
You do not currently have access to this content.