A formulation of quantum statistical mechanics is discussed in which the Feynman path centroid density in Feynman path integration is recast as the central statistical distribution used to average equilibrium and dynamical quantities. In this formulation, the path integral centroid density occupies the same role as the Boltzmann density in classical statistical mechanics. Therefore, the statistical ensemble of imaginary time path centroid configurations provides the distribution which is used to average the appropriately formulated effective operators and imaginary time correlation functions. An accurate renormalized diagrammatic perturbation theory for the centroid density and centroid‐constrained imaginary time propagator will also be described with particular emphasis given to the mathematical advantages arising from the centroid‐based formulation. The present paper is concerned with the calculation of equilibrium properties from the centroid perspective, while the companion paper describes a centroid‐based formalism for calculating dynamical time correlation functions.

1.
R. P. Feynman and A. R. Hibbs,Quantum Mechanics and Path Integrals (McGraw-Hill, New York, 1965).
2.
R. P. Feynman, Statistical Mechanics (Addison-Wesley, Reading, MA, 1972), Chap. 3.
3.
For reviews of path integral methods, both numerical and analytical, see
B. J.
Berne
and
D.
Thirumalai
,
Annu. Rev. Phys. Chem.
37
,
401
(
1986
);
D. L.
Freeman
and
J. D.
Doll
,
Adv. Chem. Phys.
70
,
139
(
1988
);
J. D.
Doll
and
D. L.
Freeman
,
Adv. Chem. Phys.
73
,
289
(
1989
); ,
Adv. Chem. Phys.
Quantum Simulations of Condensed Matter Phenomena, edited by J. D. Doll and J. E. Gubernatis (World Scientific, Singapore, 1990);
D. Chandler, in Liquides, Cristallisation et Transition Vitreuse, Les Houches, Session LI, edited by D. Levesque, J. P. Hansen, and J. Zinn-Justin (Elsevier, New York, 1991).
4.
D.
Chandler
and
P. G.
Wolynes
,
J. Chem. Phys.
74
,
4078
(
1981
);
D.
Chandler
,
J. Phys. Chem.
88
,
3400
(
1984
).
5.
See, e.g., Ref. 2, Chap. 8.
6.
See, e.g., the analytical description of an electron in water in D. Laria,
D.
Wu
, and
D.
Chandler
,
J. Chem. Phys.
95
,
4444
(
1991
);
for numerical path integral studies of the hydrated electron, see
A.
Wallqvist
,
D.
Thirumalai
, and
B. J.
Berne
,
J. Chem. Phys.
86
,
6404
(
1987
); ,
J. Chem. Phys.
J.
Schnitker
and
P. J.
Rossky
,
J. Chem. Phys.
86
,
3471
(
1987
); ,
J. Chem. Phys.
R. N.
Barnett
,
U.
Landman
,
C. L.
Cleveland
, and
J.
Jortner
,
J. Chem. Phys.
88
,
4421
(
1988
).,
J. Chem. Phys.
7.
See, e.g., Ref. 1, pp. 279–286.
8.
See, e.g., Ref. 1, pp. 303–307 and Ref. 2, pp. 86–96.
9.
R. P.
Feynman
and
H.
Kleinert
,
Phys. Rev. A
34
,
5080
(
1986
);
R.
Giachetti
and
V.
Tognetti
,
Phys. Rev. Lett.
55
,
912
(
1985
);
R.
Giachetti
and
V.
Tognetti
,
Phys. Rev. B
33
,
7647
(
1986
);
W.
Janke
and
H.
Kleinert
,
Chem. Phys. Lett.
137
,
162
(
1987
); see also Ref. 12(a).
10.
J.
Cao
and
B. J.
Berne
,
J. Chem. Phys.
92
,
162
(
1987
).
11.
G. A.
Voth
,
Phys. Rev. A
44
,
5302
(
1991
).
12.
(a)
G. A.
Voth
,
D.
Chandler
, and
W. H.
Miller
,
J. Chem. Phys.
91
,
7749
(
1989
);
(b)
G. A.
Voth
,
Chem. Phys. Lett.
170
,
289
(
1990
);
for a review of path integral quantum transition state theory, see
G. A.
Voth
,
J. Phys. Chem.
97
,
8365
(
1993
);
(c) see also the related work of
M. J.
Gillan
,
J. Phys. C
20
,
3621
(
1987
).
13.
J.
Cao
and
G. A.
Voth
,
J. Chem. Phys.
100
,
5106
(
1994
).
14.
J.
Cao
and
G. A.
Voth
,
J. Chem. Phys.
99
,
10070
(
1993
).
15.
See, e.g., M. S. Swanson, Path Integrals and Quantum Processes (Academic, San Diego, 1992), Sec. 4.2.
16.
T.
Morita
and
K.
Hiroike
,
Prog. Theor. Phys.
25
,
537
(
1961
);
C.
De Dominicis
,
J. Math. Phys.
3
,
183
(
1962
).
17.
J. E.
Mayer
,
J. Chem. Phys.
10
,
629
(
1942
).
18.
See, e.g., Ref. 2, pp. 192–197; R. D. Mattuck, A Guide to Feynman Diagrams in the Many-Body Problem, 2nd ed. (McGraw-Hill, New York, 1976).
19.
A. L. Fetter and J. D. Walecka, Quantum Theory of Many-Particle Systems (McGraw-Hill, New York, 1971);
E. N. Economou, Green’s Functions in Quantum Physics (Springer, Berlin, 1983).
This content is only available via PDF.
You do not currently have access to this content.