We have intercalated Cr(en)3+3 and Co(en)3+3 molecules (en=ethylenediamine), in known solid‐solution fractional quantities, into the highly purified layered alumino‐silicate fluorohectorite. Both molecules have like chemistry, but different physical sizes as they function to prop open the interlamellar gallery. As the fractional component x in [Co(en)3+3]x[Cr(en)3+3] 1−x–fluorohectorite is systematically varied, we observe the effect of intercalation on the host crystal basal spacing and the effects of intercalation on the guest molecules. Typical of the intercalation of rigid‐layer compounds with agents differing in size, the basal spacing shows a sigmoidal dependence on fractional concentration. This is due to the large, but not infinite rigidity of the host and guest constituents. The lifetime of the fluorescence emission from the Cr(en)3+3 molecule exhibits the same sigmoidal dependence, indicating that the uniaxial stress exerted on the molecule, as it props open the gallery, is the primary factor dictating the guest fluorescence properties.

1.
S. A.
Solin
,
J. Mol. Catalysis
27
,
293
(
1984
).
2.
K.
Norrish
,
Trans. Faraday Soc.
18
,
120
(
1954
).
3.
S. A. Solin, in Intercalation in Layered Materials, edited by M. S. Dresselhaus (Plenum, New York, 1986), p. 145.
4.
T. J.
Pinnavaia
,
Science
220
,
365
(
1983
). Visualize a pair of (rigid) steel plates propped apart by three pinballs in a triangular arrangement.
5.
N.
Wada
,
R.
Raythatha
, and
S.
Minomura
,
Solid State Commun.
63
,
783
(
1987
).
6.
H.
Kim
,
W.
Jin
,
S.
Lee
,
P.
Zhou
,
T. J.
Pinnavaia
,
S. D.
Mahanti
, and
S. A.
Solin
,
Phys. Rev. Lett.
60
,
2168
(
1988
).
7.
H. X.
Jiang
,
S. A.
Solin
,
H.
Kim
, and
T. J.
Pinnavaia
,
Proc. Mat. Res. Soc.
1ll
,
225
(
1988
).
8.
M.
Suzuki
,
M.
Yeh
,
C. R.
Burr
,
M. S.
Whittingham
,
K.
Koga
, and
H.
Nishihara
,
Phys. Rev. B
40
,
11229
(
1989
).
9.
J. M.
Gales
and
S. D.
Mahanti
,
Phys. Rev. B
40
,
12319
(
1989
).
10.
N.
Wada
and
W. A.
Kamitakahara
,
Phys. Rev. B
43
,
2391
(
1991
).
11.
M.
Holtz
,
S. A.
Solin
, and
T. J.
Pinnavaia
,
Phys. Rev. B
48
,
13312
(
1993
).
12.
Advanced Techniques for Clay Mineral Analysis, edited by J. J. Fripiat (Elsevier, Amsterdam, 1982).
13.
M. Holtz (unpublished).
14.
U.
Geiser
and
H. U. G.
del
,
Inorg. Chem.
20
,
3013
(
1981
).
15.
H.
Kim
,
W.
Jin
,
S.
Lee
,
T. J.
Pinnavaia
,
S. D.
Manhanti
, and
S. A.
Solin
,
Phys. Rev. Lett.
60
,
2168
(
1988
).
16.
M. F.
Thorpe
,
W.
Jin
, and
S. D.
Mahanti
,
Phys. Rev. B
40
,
10294
(
1989
).
17.
S.
Lee
and
S. A.
Solin
,
Phys. Rev. B
43
,
12012
(
1992
).
18.
Y.
Fan
,
S. A.
Solin
,
H.
Kim
,
T. J.
Pinnavaia
, and
D. A.
Neumann
,
J. Chem. Phys.
96
,
7064
(
1992
).
19.
T. M. Thomas, in Intercalation Chemistry, edited by M. S. Whittingham and A. J. Jacobsen (Academic, New York, 1982).
20.
P. K.
Ghosh
and
A. J.
Bard
,
J. Phys. Chem.
88
,
5519
(
1984
).
21.
M. D.
Newsham
,
E.
Giannelis
,
T. J.
Pinnavaia
, and
D. G.
Nocera
,
J. Am. Chem. Soc.
110
,
3885
(
1988
).
22.
D. V. O’Connor and D. Phillips, Time-Correlated Single Photon Counting (Academic, London, 1984).
23.
S. W. Bailey in Crystal Structures of Clay Minerals and Their X-Ray Identification, edited by G. W. Brindley and G. Brown (Mineralogical Society, London, 1980).
24.
C. D.
Flint
,
J. Chem. Phys.
52
,
168
(
1970
).
25.
G. J.
Piermarini
,
S.
Block
,
J. D.
Barnett
, and
R. A.
Forman
,
J. Appl. Phys.
46
,
2779
(
1975
).
This content is only available via PDF.
You do not currently have access to this content.