Feynman path integral quantum transition state theory is used to calculate the quantum rate constants for model proton transfer systems in a polar fluid. The effects of intramolecular vibrations on the proton transfer rate, as well as those from solute and solvent electronic polarization, are examined. In the latter study, quantum Drude oscillators are used to model the high frequency electronic polarization of the solvent and a path integral action functional is developed within the context of that model. The results obtained with the corresponding classical Drude model are compared with the correct quantum treatment. From these calculations, it is concluded that proton transfer reactions involving a significant degree of tunneling cannot be quantitatively described without a quantum mechanical polarizable solvent model. Furthermore, the calculations illustrate the intrinsically nonlinear character of the proton tunneling process in polar solvents.  

1.
A.
Warshel
,
J. Phys. Chem.
86
,
2218
(
1982
).
2.
D.
Borgis
and
J. T.
Hynes
,
J. Chem. Phys.
94
,
3619
(
1991
).
3.
R. I.
Cukier
and
M. J.
Morillo
,
Chem. Phys.
91
,
857
(
1989
).
4.
D.
Borgis
,
S.
Lee
, and
J. T.
Hynes
,
Chem. Phys. Lett.
162
,
19
(
1989
);
D.
Borgis
and
J. T.
Hynes
,
Chem. Phys.
170
,
315
(
1993
).
5.
R. I.
Cukier
and
M.
Morillo
,
J. Chem. Phys.
92
,
4833
(
1990
);
A.
Suárez
and
R.
Silbey
,
J. Chem. Phys.
94
,
4809
(
1991
).
6.
(a)
J.
Lobaugh
and
G. A.
Voth
,
Chem. Phys. Lett.
198
,
311
(
1992
);
(b)
D. H.
Li
and
G. A.
Voth
,
J. Phys. Chem.
95
,
10425
(
1991
);
(c) an application of path integral QTST [Ref. 8(a)] to charge transfer reactions which employs the diabatic energy gap coordinate as the reaction coordinate is given in
A.
Warshel
and
Z. T.
Chu
,
J. Chem. Phys.
93
,
4003
(
1990
);
J.-K.
Hwang
,
Z. T.
Chu
,
A.
Yadav
, and
A.
Warshel
,
J. Phys. Chem.
95
,
8445
(
1991
). The relationship of the results obtained with such a reaction coordinate to those calculated with the approach taken in Refs. 6(a) and 6(b) is unclear.
7.
(a)
D.
Borgis
,
G.
Tarjus
, and
H.
Azzouz
,
J. Phys. Chem.
96
,
3188
(
1992
);
D.
Borgis
,
G.
Tarjus
, and
H.
Azzouz
,
J. Chem. Phys.
97
,
1390
(
1992
);
D.
Laria
,
G.
Ciccotti
,
M.
Ferrario
, and
R.
Kapral
,
J. Chem. Phys.
97
,
378
(
1992
);
(b) For a comparison of the molecular dynamics approach with path integral QTST, see
H.
Azzouz
and
D.
Borgis
,
J. Chem. Phys.
98
,
7361
(
1993
).
8.
(a)
G. A.
Voth
,
D.
Chandler
, and
W. H.
Miller
,
J. Chem. Phys.
91
,
7749
(
1989
);
G. A.
Voth
,
Chem. Phys. Lett.
170
,
289
(
1990
);
for a review of path integral QTST, see
G. A.
Voth
,
J. Phys. Chem.
97
,
8365
(
1993
);
(b) see also the related work of
M. J.
Gillan
,
J. Phys. C
20
,
3621
(
1987
).
9.
R. P. Feynman, Statistical Mechanics (Addison-Wesley, Reading, MA, 1972).
10.
For reviews, see
B. J.
Berne
and
D.
Thirumalai
,
Annu. Rev. Phys. Chem.
37
,
401
(
1986
);
D. L.
Freeman
and
J. D.
Doll
,
Adv. Chem. Phys.
70B
,
139
(
1988
);
J. D.
Doll
and
D. L.
Freeman
,
Adv. Chem. Phys.
73
,
289
(
1989
); ,
Adv. Chem. Phys.
Quantum Simulations of Condensed Matter Phenomena, edited by J. D. Doll and J. E. Gubernatis (World Scientific, Singapore, 1990);
D. Chandler, in Liquides, Cristallisation et Transition Vitreuse, Les Houches, Session LI, edited by D. Levesque, J. P. Hansen, and J. Zinn-Justin (Elsevier, New York, 1991).
11.
J. P. Valleau and G. M. Torrie, Statistical Mechanics, Part A, edited by B. J. Berne (Plenum, New York, 1977).
12.
J. C.
Owicki
,
ACS Symp. Ser.
86
,
159
(
1978
).
13.
For reviews, see
P.
Hänggi
,
P.
Talkner
, and
M.
Borkovec
,
Rev. Mod. Phys.
62
,
250
(
1990
);
J. T.
Hynes
,
Annu. Rev. Phys. Chem.
36
,
573
(
1985
);
The Theory of Chemical Reactions, edited by M. Baer (CRC, Boca Raton, FL, 1985), p. 171;
B. J.
Berne
,
M.
Borkovec
, and
J. E.
Straub
,
J. Phys. Chem.
92
,
3711
(
1988
);
A.
Nitzan
,
Adv. Chem. Phys.
70
, Part
2
489
(
1988
);
J. N.
Onuchic
and
P. G.
Wolynes
,
J. Phys. Chem.
92
,
6495
(
1988
);
D.
Chandler
,
J. Stat. Phys.
42
,
49
(
1986
);
S. A.
Adelman
,
Adv. Chem. Phys.
53
,
61
(
1983
);
S. A.
Adelman
,
J. Phys. Chem.
89
,
2213
(
1985
).
14.
A.
Warshel
and
R. M.
Weiss
,
J. Am. Chem. Soc.
102
,
6218
(
1980
);
A. Warshel, Computer Modeling of Chemical Reactions in Enzymes and Solutions (Wiley, New York, 1991).
15.
See, e.g.,
E. L.
Pollock
, and
B. J.
Alder
,
Physica
102A
,
1
(
1980
).
16.
(a) Papers discussing various aspects of the quantum Drude oscillator model include
M. S.
Wertheim
,
Mol. Phys.
26
,
1425
(
1973
);
E. L.
Pollock
and
B. J.
Alder
,
Phys. Rev. Lett.
41
,
903
(
1978
);
F. J.
Vesely
,
J. Comp. Phys.
24
,
361
(
1979
);
J. S.
Hoye
and
G.
Stell
,
Mol. Phys.
73
,
461
(
1980
);
L. R.
Pratt
,
Mol. Phys.
40
,
347
(
1980
); ,
Mol. Phys.
J. S.
Hoye
and
G.
Stell
,
J. Chem. Phys.
75
,
5133
(
1981
);
E. L.
Pollock
,
B. J.
Alder
and
G. N.
Patey
,
Physica
108A
,
14
(
1981
);
M. J.
Thompson
,
K. S.
Schweizer
, and
D.
Chandler
,
J. Chem. Phys.
76
,
1128
(
1982
);
J. S.
Hoye
and
G.
Stell
,
J. Chem. Phys.
77
,
5173
(
1982
); ,
J. Chem. Phys.
Z.
Chen
and
R. M.
Stratt
,
J. Chem. Phys.
95
,
2669
(
1991
);
(b) For a paper of particular relevance to the present work, see
J.
Cao
and
B. J.
Berne
,
J. Chem. Phys.
97
,
8628
(
1992
).
17.
J. N.
Gehlen
,
D.
Chandler
,
H. J.
Kim
, and
J. T.
Hynes
,
J. Phys. Chem.
96
,
1748
(
1992
).
This content is only available via PDF.
You do not currently have access to this content.