Measurements are presented of the long‐time self‐diffusion coefficient and of the low shear limiting viscosity of dispersions of charge stabilized colloidal silica spheres. Long‐time self‐diffusion coefficients were measured using fluorescence recovery after photobleaching (FRAP), the theory of which is presented and generalized to Gaussian laser beams. The particles, suspended in solutions of LiCl in dimethylformamide, interacted via a screened Coulomb potential, the range of which was varied through the ionic strength. Measurements were made up to volume fractions beyond freezing where a coexistence occurred between a colloidal crystal and a colloidal fluid. It is often speculated that the long‐time self‐diffusion coefficient and the low shear viscosity of a dispersion are related through a simple Stokes–Einstein‐like relation, but this expectation is not confirmed by the experiments. A slightly modified relation, however, does seem to provide a reasonable empirical description of the data.

1.
M. M.
Kops-Werkhoven
and
H. M.
Fijnaut
,
J. Chem. Phys.
77
,
2242
(
1982
).
2.
W.
van Megen
and
S. M.
Underwood
,
J. Chem. Phys.
91
,
552
(
1989
).
3.
R. H.
Ottewill
and
N. St. J.
Williams
,
Nature
325
,
232
(
1987
).
4.
W.
Härtl
,
H.
Versmold
, and
X.
Zhang-Heider
,
Ber. Bunsenges. Phys. Chem.
95
,
1105
(
1991
).
5.
S.
Gorti
,
L.
Plank
, and
B. R.
Ware
,
J. Chem. Phys.
81
,
909
(
1984
).
6.
A.
van Blaaderen
,
J.
Peetermans
,
G.
Maret
, and
J. K. G.
Dhont
,
J. Chem. Phys.
96
,
4591
(
1992
).
7.
A. Einstein, Investigations on the Theory of the Brownian Motion (Dover, New York, 1956).
8.
D.
Chatenay
,
W.
Urbach
,
R.
Messager
, and
D.
Langevin
,
J. Chem. Phys.
86
,
2343
(
1986
).
9.
H. J. V. Tyrrell, Diffusion and Heat Flow in Liquids (Butterworth, London, 1961), pp. 159–160.
10.
R.
Zwanzig
,
J. Chem. Phys.
79
,
4507
(
1983
).
11.
U.
Balucani
,
R.
Vallauri
, and
T.
Gaskell
,
Ber. Bunsenges. Phys. Chem.
94
,
261
(
1990
).
12.
J.
Davoust
,
P. F.
Devaux
, and
L.
Leger
,
EMBO Journal
1
,
1233
(
1982
).
13.
G. K.
Batchelor
,
J. Fluid Mech.
131
,
155
(
1983
).
14.
B.
Cichocki
and
B. U.
Felderhof
,
J. Chem. Phys.
89
,
3705
(
1988
).
15.
J. A.
Leegwater
and
G.
Szamel
,
Phys. Rev. A
46
,
4999
(
1992
).
16.
(a)
B.
Cichocki
and
K.
Hinsen
,
Physica A
166
,
473
(
1990
);
(b)
B.
Cichocki
and
K.
Hinsen
,
187
,
133
(
1992
).,
Physica A
17.
M.
Medina-Noyola
,
Phys. Rev. Lett.
60
,
2705
(
1988
).
18.
E. J. W. Verwey and J. Th. G. Overbeek, Theory of the Stability of Lyophobic Colloids (Elsevier, Amsterdam, 1948).
19.
D.
Axelrod
,
D. E.
Koppel
,
J.
Schlessinger
,
E.
Elson
, and
W. W.
Webb
,
Biophys, J.
16
,
1055
(
1976
).
20.
F.
Lanni
and
B. R.
Ware
,
Rev. Sci. Instrum.
53
,
905
(
1982
).
21.
W.
Stöber
,
A.
Fink
, and
E.
Bohn
,
J. Colloid Interface Sci.
26
,
62
(
1968
).
22.
A.
van Blaaderen
and
A.
Vrij
,
Langmuir
8
,
2921
(
1992
).
23.
J.
Prue
and
P. J.
Sherrington
,
Trans. Faraday Soc.
57
,
1795
(
1961
).
24.
R. J. Hunter, Zeta Potential in Colloid Science (Academic, London, 1981).
25.
S. E.
Paulin
and
B. J.
Ackerson
,
Phys. Rev. Lett.
64
,
2663
(
1990
).
26.
W. G.
Hoover
and
F. H.
Ree
,
J. Chem. Phys.
49
,
3609
(
1968
).
27.
S.
Hachisu
,
Y.
Kobayashi
, and
A.
Kose
,
J. Colloid Interface Sci.
42
,
342
(
1973
).
28.
A.
Grabbe
and
R. G.
Horn
,
J. Colloid Interface Sci.
,
157
,
375
(
1993
).
29.
R. S. Kittila, Dimethylformamide: Chemical Uses (Du Pont de Nemours, Wilmington, Delaware, 1967).
30.
J. C.
van der Werff
and
C. G.
de Kruif
,
J. Rheol.
33
,
421
(
1989
).
This content is only available via PDF.
You do not currently have access to this content.